HQ

Cho x,y là các số thỏa mãn: \(\left(\sqrt{x^2+3}+x\right)\left(\sqrt{y^2+3}+y\right)=3\)
Hãy tính giá trị của biểu thức: \(A=x^{2013}+y^{2013}+1\)

 

LF
2 tháng 9 2016 lúc 8:59

Nhân 2 vế của pt đầu với \(x-\sqrt{x^2+3}\) đc:

\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)

\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)

Tương tự nhân 2 vế của pt đầu với \(y-\sqrt{y^2+3}\) đc:

\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)

Từ (1) và (2) =>2(x+y)=0

=>x+y=0<=>x=-y

<=>x2013=-y2013

<=>x2013+y2013=0

A=x2013+y2013+1=1

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
PA
Xem chi tiết
LD
Xem chi tiết
TM
Xem chi tiết
NT
Xem chi tiết
PA
Xem chi tiết
WR
Xem chi tiết
NA
Xem chi tiết
SN
Xem chi tiết