LD

cho x,y,z>0 thỏa mãn x+y+z+\(\sqrt{xyz}\)=4. Tính giá trị biểu thức:

\(A=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}\)

H24
22 tháng 6 2017 lúc 23:35

thay xyz=(4-x-y-z)2vào

Bình luận (0)
TQ
10 tháng 9 2018 lúc 19:28

Ta có \(x+y+z+\sqrt{xyz}=4\Rightarrow4x+4y+4z+4\sqrt{xyz}=16\)

Ta lại có \(\sqrt{x\left(4-y\right)\left(4-z\right)}=\sqrt{x\left(16-4y-4z+yz\right)}=\sqrt{x\left(4x+4\sqrt{xyz}+yz\right)}=\sqrt{4x^2+4x\sqrt{xyz}+xyz}=\sqrt{\left(2x+\sqrt{xyz}\right)^2}=2x+\sqrt{xyz}\)

Tương tự \(\sqrt{y\left(4-z\right)\left(4-x\right)}=2y+\sqrt{xyz}\)

\(\sqrt{z\left(4-x\right)\left(4-y\right)}=2z+\sqrt{xyz}\)

Suy ra \(P=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}=2x+\sqrt{xyz}+2y+\sqrt{xyz}+2z+\sqrt{xyz}-\sqrt{xyz}=2x+2y+2z+2\sqrt{xyz}=2\left(x+y+z+\sqrt{xyz}\right)=2.4=8\)

Bình luận (0)

Các câu hỏi tương tự
LC
Xem chi tiết
PA
Xem chi tiết
PV
Xem chi tiết
PA
Xem chi tiết
TM
Xem chi tiết
CW
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
HY
Xem chi tiết