Bài 3: Lôgarit

TT

Cho x,y >0, x,y khác 1,logyx+ logxy =\(\dfrac{10}{3}\) và xy=144,vậy \(\dfrac{x+y}{2}\)=?

A.24 B.30 C.12\(\sqrt{2}\) D.13\(\sqrt{3}\)

AH
11 tháng 8 2017 lúc 17:03

Lời giải:

Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:

\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)

Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:

\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)

Giả sử \(a=\log_yx=3\)\(b=\log_xy=\frac{1}{3}\)

\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DH
Xem chi tiết
NP
Xem chi tiết
TP
Xem chi tiết
SK
Xem chi tiết
NS
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết