Bài 1: Căn bậc hai

NN

Cho x,y >0 thỏa mãn: \(xy+\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=\sqrt{2018}\)

Tính \(Á=x\sqrt{y^2+1}+y\sqrt{x^2+1}\)

HL
19 tháng 9 2017 lúc 21:12

\(xy+\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=\sqrt{2018}\)

\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2018\)

\(x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2018\)

\(x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2017\)

\(\left(x\sqrt{y^2+1}+y\sqrt{x^2+1}\right)^2=2017\)

\(\Rightarrow A=\left(x\sqrt{y^2+1}+y\sqrt{x^2+1}\right)^2=2017\)

\(\Rightarrow A=\sqrt{2017}\) khi x, y > 0 hoặc \(A=-\sqrt{2017}\) khi x, y < 0

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
VT
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
AD
Xem chi tiết
PP
Xem chi tiết
PP
Xem chi tiết
TV
Xem chi tiết