Violympic toán 9

NT

Cho x, y, z là ba số dương thoả mãn: \(x+y+z=3\). Chứng minh rằng: \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)

NL
15 tháng 4 2019 lúc 17:13

\(VT=\sum\frac{x}{x+\sqrt{\left(xy+xz+yz\right)x+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\sum\frac{x}{x+\sqrt{\left(\sqrt{x}^2+\sqrt{y}^2\right)\left(\sqrt{z}^2+\sqrt{x}^2\right)}}\)

\(\Rightarrow VT\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{yz}\right)^2}}=\sum\frac{x}{x+\sqrt{xz}+\sqrt{yz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
HC
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết