Violympic toán 9

HC

Cho 3 số dương x,y,z và x+y+z=3

Chứng minh \(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)

PQ
5 tháng 3 2019 lúc 14:44

\(\sum\frac{x}{x+\sqrt{3x+yz}}=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Sử dụng BĐT Cauchy-Schwarz, ta có

\(\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xy}+\sqrt{xz}\right)^2}}\)

\(=\sum\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NM
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
TB
Xem chi tiết
DL
Xem chi tiết
ND
Xem chi tiết