cho ΔDEF vuông tại E có EF = 6cm, ED = 8cm, đường cao EM
a Chứng minh rằng ΔMEF đồng dạng với ΔEDF
b Chứng minh EM2 = MD.MF
c Kẻ tia phân giác góc D cắt EF tại N. chứng minh NE.DF=NF.ED
d Gọi I là giao điểm của DN và EM. Chứng minh tam giác EIN
Cho tam giác ABC vuông tại C (AC<BC). Vẽ tia phân giác Ax của BAC cắt cạnh BC tại I. Vẽ BH vuông góc tại Ax tại H.
a) Chứng minh tam giác AIC đồng dạng tam giác ABH
b) Chứng minh HB 2 = HI.HA
c) Kẻ đường cao CK của tam giác ABC> Kẻ KD là đường phân giác của tam giác CKA. Chứng minh \(\dfrac{CD}{DA}=\dfrac{CB}{CA}\)
Xin hãy giúp mình với ạ! Mình xin cám ơn!
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a, Chứng minh AH = MN b, Chứng minh tam giác AHM đồng dạng với tam giác AHB rồi suy ra AH^2 = AM . AB c, Chứng minh tam giác AMN đồng dạng với tam giác ACB d, Cho AB = 6cm, AC = 8cm. Tính diện tích của tam giác AMN.
Cho hình thoi ABCD có góc A bằng 600. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt
đường thẳng AB tại E và đường thẳng AD tại F.
a)Chứng minh : tam giác BEC đồng dạng tam giác AEF
b)Chứng minh : tam giác DCF đồng dạng tam giác AEF
c)Chứng minh : BE.DF = DB2.
d) Chứng minh : tam giác BDE đồng dạng tam giác DBF
Cho tam giác ABC vuông tại A, AB=6cm,AC=8cm, đường cao AH (H thuộc BC)
a) Tính BC
b) Chứng minh rằng tam giác AHB đồng dạng tam giác CHA
c) Gọi BD là đường phân giác của góc B ( D thuộc AC). Tính DA,DC
Giải giúp em gấp ạ! Cảm ơn
Cho hình chữ nhật ABCD có AB=12cm, BC=9cm. GỌi H là chân đường vuông góc kẻ từ S xuống Bd. Tia AH cắt DC tại F và cắt đường thẳng BC tại E. Chứng minh AH2 = EH . FH
Cho tam giác ABC vuông tại A.Biết AB=15cm,AC=20cm.Kẻ AH vuông góc với BC tại H.
a)CM:tam giác HBA và tam giác BAH đồng dạng với nhau
b)Vẽ tia phân giác của góc BAH cắt cạnh BH tại D.Kẻ AH vuông góc với BC tại H
c)Trên cạnh HC lấy điểm E sao cho HE=HA,qua E vẽ đường thẳng vuông góc với cạnh BC cắt cạnh AC tại M,qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của góc MEC tại F.Chứng minh rằng ba điểm H,M,F thẳng hàng
các đường phân giác các góc ngoài tại đỉnh B và C của tam giác ABC cát nhau ở K đường thẳng vuông góc với AK tại K cắt các đường thẳng AB , AC .theo thứ tự ở D và E . C/M:
a, DBKđồng dạng KEC
b, DE^2 = 4BD.CE
cho Δ MNP vuông tại M (MN<MP) đường cao MH (H thuộc NP)
a)chứng minh:ΔMNP đồng dạng ΔHNM và MN22=NNHNH.NNMNM
b)chứng minh: MH2=HN.HP
c)PD là tia phân giác của góc NPM. Chứng minh:DN.HM=DM.MN