Bài 2: Dãy số

TP

Cho \(u_n\)thỏa mãn \(\left\{{}\begin{matrix}u_1=1;u_2=2\\u_{n+1}=u^2_n-u^{ }_n+2\end{matrix}\right.\)với \(n\ge2\)

Đặt \(S_n=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_n^2+1\right)-1\) với \(n\ge1\)

Chứng minh rằng: \(S_n\) là số chính phương

NL
18 tháng 9 2020 lúc 13:51

\(u_3=u_2^2-u_2+2=4\)

\(S_1=1=\left(2-1\right)^2=\left(u_2-1\right)^2\)

\(S_2=2.5-1=9=\left(4-1\right)^2=\left(u_3-1\right)^2\)

Dự đoán \(S_n=\left(u_{n+1}-1\right)^2\)

Ta sẽ chứng minh bằng quy nạp:

- Với \(n=1;2\) đúng (đã kiểm chứng bên trên với \(S_1;S_2\))

- Giả sử đẳng thức đúng với \(n=k\)

Hay \(S_k=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)-1=\left(u_{k+1}-1\right)^2\)

Ta cần chứng minh:

\(S_{k+1}=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)\left(u_{k+1}^2+1\right)-1=\left(u_{k+2}-1\right)^2\)

Thật vậy:

\(S_{k+1}=\left[\left(u_{k+1}-1\right)^2+1\right]\left(u_{k+1}^2+1\right)-1\)

\(=\left(u_{k+1}^2-2u_{k+1}+2\right)\left(u_{k+1}^2+1\right)-1\)

\(=\left(u_{k+2}-u_{k+1}\right)\left(u_{k+2}+u_{k+1}-1\right)-1\)

\(=u_{k+2}^2-u_{k+2}-u_{k+1}^2+u_{k+1}-1\)

\(=u_{k+2}^2-u_{k+2}+2-u_{k+2}-1\)

\(=\left(u_{k+2}-1\right)^2\) (đpcm)

Bình luận (0)
TP
22 tháng 9 2020 lúc 22:43

e cảm ơn ạ

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
DA
Xem chi tiết
TC
Xem chi tiết
TC
Xem chi tiết
TC
Xem chi tiết
NN
Xem chi tiết
MA
Xem chi tiết