Cho tứ giác ABCD. Trên cạnh AB lấy các điểm E, F sao cho AE = EF = FB. Trên cạnh CD lấy các điểm G, H sao cho DG = GH = HC. Gọi M, I, K, N theo thứ tự là trung điểm của AD, EG, FH, BC. Chứng minh rằng bốn điểm M, I, K, N thẳng hàng
Cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD
1) Chứng minh tứ giác AECF là hình bình hành
2) Chứng minh O là trung điểm của EF
Cho hình bình hành ABCD. Trên cạnh AB và CD lần lượt lấy các điểm E; F sao cho AE = CF.
a)Chứng minh: AF = EC.
b)Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh tứ giác EMFN là hình bình hành.
c) Ở phía ngoài của hình bình hành dựng 2 tam giác đều ADP và DCQ. Chứng minh rằng tam giác BPQ là tam giác đều.
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA và I, K là trung điểm các đường chéo AC, BD.
Chứng minh: a) Các tứ giác MNPQ, INKQ là hình bình hành
b) Các đường thẳng MP, NQ, IK đồng quy
Cho tam giác ABC (AB < AC). Trên cạnh CA lấy điểm I sao cho CI = AB. Trên tia đối của tia
AB lấy điểm D sao cho AD = AI. Trên tia đối của tia BA lấy điểm E sao cho BE = BC. Gọi K là giao
điểm của DI và EC, gọi N là giao điểm của BK và AC. Qua C kẻ đường thẳng song song với AB, cắt DK
ở H. Chứng minh rằng
a) ABHC là hình bình hành
. b) tam giác BCN là tam giác cân.
cho hình bình hành ABCD có A=60 độ. lấy các điểm E và F theo thứ tự thuộc AD và CD sao cho DE=CF. gọi K là điểm đối xứng F qua BC.
Chứng mình rằng EK // AB
Hình bình hành ABCD có góc A = 60 độ lấy các điểm E, F theo thứ tự thuộc cạnh AD sao cho DE = CF. Gọi K là điểm đối xứng của E qua BC. Chứng minh: IK song song AB
Cho hình bình hành ABCD. Trên AB lấy điểm M, trên CD lấy điểm N sao cho MB=DN. a) Chứng minh các tứ giác BMDN, AMCN là các hình bình hành b) Gọi K là giao điểm của DM và AN, H là giao điểm của BN và CM. Tứ giác MKNH là hình gì