Cho tứ diện ABCD. Gọi M,K lần lượt là trung điểm của BC và AC. N là điểm trên cạnh BD sao cho BN=2ND. Gọi F là giao điểm của AD và mp(MNK). Trong các mệnh đề sau, mệnh đề nào đúng?
A. AF=3FD
B. AF=2FD
C. AF=FD
D. FD=2AF
Cho tứ diện đều ABCD cạnh a. I, J lần lượt là trung điểm của AC và BC. Gọi K là giao điểm trên cạnh BD với KB = 2KD. Thiết diện của tứ diện với mặt phẳng (IJK) là hình gì?
A. thiết diện là hình thang cân.
B. hình bình hành.
C. tam giác.
D. tứ giác không có cặp cạnh nào song song.
Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn AB và AB = 2 CD. Gọi I, J, K lần lượt là ba điểm trên các cạnh SA; AB; BC. Gọi P, Q lần lượt là giao điểm của JK với AD và CD; F là giao điểm của SD và IP. Tìm giao điểm G của SC và mp (IJK) . Tính tỉ số G S G C
A. 1
B. 2
C. 3
D. 4
Cho tứ diện ABCD. Gọi I và K là trung điểm AB và CD. Gọi J là một điểm trên AD sao cho AD=3JD a) Tìm giao điểm F của IJ và (BCD) b) Tìm giao điểm E của BC và (IJK) c) Chứng minh AC, KJ, IE đồng quy tại H Cho tứ diện ABCD. Gọi I và K là trung điểm AB và CD. Gọi J là một điểm trên AD sao cho AD=3JD a) Tìm giao điểm F của IJ và (BCD) b) Tìm giao điểm E của BC và (IJK) c) Chứng minh AC, KJ, IE đồng quy tại H d, Chứng minh EJ//HF
cho tứ diện SABC.Gọi H,K lần lượt là 2 điểm trên cạnh SA,SC sao cho HK không song song với AC. I là trung điểm BC
a) tìm giao điểm của SB và mp(ABC)
b) tìm giao điểm của HB và mp(SAC)
c) tìm giao điểm của BK và mp(SAC)
d) tìm giao điểm của HK và mp(ABC)
cho tứ diện SABC.Gọi H,K lần lượt là 2 điểm trên cạnh SA,SC sao cho HK không song song với AC. I là trung điểm BC
a) tìm giao điểm của SB và mp(ABC)
b) tìm giao điểm của HB và mp(SAC)
c) tìm giao điểm của BK và mp(SAC)
d) tìm giao điểm của HK và mp(ABC)
Cho hình chóp S.ABCD có đáy ABCD là hình thang ( đáy lớn AB). Gọi I,J lần lượt là trung điểm của AD và BC, K là điểm trên cạnh SB sao cho SK=2/3SB
a. Tìm giao tuyến của (SAB) và (IJK)
b. Tìm thiết diện của ( IJK) với hình chóp S.ABCD. Tìm điều kiện để thiết diện là hình bình hành
Cho tứ diện ABCD và điểm M thuộc miền trong của tam giác ACD. Gọi I và J lần lượt là 2 điểm trên cạnh BC và BD sao cho IJ không song song với CD. Gọi H và K lần lượt là giao điểm của IJ và CD; MH và AC. giao tuyến của 2 mặt phẳng (ACD) và (IJM) là
A. KI
B. KJ
C. MI
D. MH