a.
\(\left\{{}\begin{matrix}D\in\left(CDE\right)\\D\in\left(ABD\right)\end{matrix}\right.\) \(\Rightarrow D\in\left(CDE\right)\cap\left(ABD\right)\)
\(\left\{{}\begin{matrix}E\in\left(CDE\right)\\E\in AB\in\left(ABD\right)\end{matrix}\right.\) \(\Rightarrow E\in\left(CDE\right)\cap\left(ABD\right)\)
\(\Rightarrow DE=\left(CDE\right)\cap\left(ABD\right)\)
b.
\(\left\{{}\begin{matrix}E\in\left(DEF\right)\\E\in AB\in\left(ABC\right)\end{matrix}\right.\) \(\Rightarrow E\in\left(DEF\right)\cap\left(ABC\right)\)
\(\left\{{}\begin{matrix}F\in\left(DEF\right)\\F\in AC\in\left(ABC\right)\end{matrix}\right.\) \(\Rightarrow F\in\left(DEF\right)\cap\left(ABC\right)\)
\(\Rightarrow EF=\left(DEF\right)\cap\left(ABC\right)\)