Cho tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{a.d}{c.d}=\dfrac{a^2-b^2}{b^2-d^2}\)và \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

NL
12 tháng 12 2021 lúc 10:02

Đẳng thức đầu tiên sai:

Ví dụ: \(a=1;b=2;c=3;d=6\) thì \(\dfrac{a}{b}=\dfrac{c}{d}\)

Nhưng \(\dfrac{a.d}{c.d}\ne\dfrac{a^2-b^2}{b^2-d^2}\)

Với đẳng thức thứ 2:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
DB
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VP
Xem chi tiết
DF
Xem chi tiết
LP
Xem chi tiết