Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho góc xOy, trên tia Ox lấy C, B sao cho OC = 2cm, OB = 9cm. Trên tia Oy lấy A, D sao cho OA = 3cm, OD = 6cm.
a) Chứng minh tam giác OAB đồng dạng với tam giác OCD
b) Gọi G là trọng tâm tam giác OAB. Qua G kẻ đường thẳng d cắt OA, AB. Kẻ OE, AH, BF vuông góc với d. Chứng minh OE + BF = AH
Cho tam giác ABC (AB < AC). Phân giác trong AD. Trên tia đối của tia DA lấy I sao cho \(\widehat{BAD}\) = \(\widehat{DCI}\)
a) Chứng minh \(\Delta ADB\sim\Delta DCI\)
b) Chứng minh \(\dfrac{AD}{AC}\)=\(\dfrac{AB}{AI}\)
c) Chứng minh AD2 = AB.AC - DB.DC
d) Gọi AE là phân giác ngoài của \(\Delta ABC\) (\(E\in BC\)). Chứng minh \(\dfrac{DB}{DC}\) = \(\dfrac{EB}{EC}\)và AE2 = EC.EB - AB.AC
1, cho tam giác ABC đều , các đường phân giác góc B và góc C cắt nhau tại O. trên cạnh BC lấy điểm D không trùng với trung điểm của nó. vẽ DE vuông góc với AB cắt OB tại M, vẽ DF vuông góc với AC cắt OC tại N chứng minh rằng
a/ \(\dfrac{DM}{DN}=\dfrac{DE}{DF}\)
b/ OD chia đôi EF
2, Cho tam giác ABC, AB = 12, AC = 15. trên cạnh AB, AC lần lượt lấy M và N sao cho AM = 5, AN = 4
a/ chứng minh tứ giác MNCB có các cặp góc đối bù nhau
b/ Gọi O là giao điểm của BN và CM. chứng minh OB . ON = OC . OM
Cho tam giác ABC và O là một điểm bất kỳ trong tam giác. Các tia AO, BO, CO cắt các cạnh BC, CA, AB thứ tự tại các điểm P, Q, R. Chứng minh \(\dfrac{OA}{OP}.\dfrac{OB}{OQ}.\dfrac{OC}{OR}\ge8\)
Bài 1: Cho hình vuông ABCD và hai đường chéo AC và BD cắt nhau tại O. Lây điểm N thuộc đoạn AC sao cho AN = ½ NC. DN cắt AB tại I. a) Chứng minh: tam giác ANI đồng dạng với tam giác CND b) Chứng minh: OI// AD c) Gọi E là trung điểm của đoạn OA, đường thắng DE cắt AB tại F. Chứng minh AFN = AEI d) Chứng minh: DE. DF = DN. DI
Cho tam giác vuông ABC, \(\widehat{A}=90^0;\widehat{C}=30^0\) và đường phân giác BD (D thuộc cạnh AC)
a) Tính tỉ số \(\dfrac{AD}{CD}\)
b) Cho biết độ dài AB = 12,5cm. hãy tính chu vi và diện tích của tam giác ABC
Cho tam giác ABC nhọn, các đường cao AA', BB', CC', H là trực tâm.
a) Tính tổng \(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}\)
b) Gọi AI là phân giác của tam giác ABC; IM, IN thứ tự là phân giác của \(\widehat{AIC}\) và \(\widehat{AIB}\). Chứng minh rằng: AN.BI.CM = BN.IC.AM
c) Tam giác ABC như thế nào thì biểu thức \(\dfrac{\left(AB+BC+CA\right)^2}{AA'^2+BB'^2+CC'^2}\) đạt giá trị nhỏ nhất ?
Cho ΔABC cân tại A ,hai đường cao AI và BD cắt nhau tại H.
a) Chứng minh rằng :ΔAIC ∼ ΔBDC.
b) Gọi E là giao điểm của CH và AB.Chứng minh BE.BA + CH.CE = BC2.
c) Gọi T là giao điểm của DE và AH.Chứng minh \(\dfrac{1}{AT}\) + \(\dfrac{1}{AI}\) = \(\dfrac{2}{AH}\)
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh:
a) HA. HD = HB. HE = HC. HF
b) AH.AD + BH.BE + CH.CF = \(\dfrac{1}{2}\)(AB2 + BC2 + CA2)
c) H là giao điểm 3 đường phân giác của tam giác DEF.