Ôn tập chương I : Tứ giác

HH

cho tam giác nhọn abc có bc = 2ab. gọi d là trung điểm của đoạn thẳng bc. từ d kẻ tia dx//ab và từ a kẻ tia ay//bc sao cho tia dx cắt tia ay tại e.

a, cmr tứ giác abde là hình thoi

b, cmr tứ giác aecd là hbh và be vuông góc ce

c, gọi o là giao điểm của be và ad, k là giao điểm của de và oc, j là giao điểm của bk và ec. cmr je=jc

d, gọi i là giao điểm của bk và od. cm: 4io = ad

NT
1 tháng 11 2020 lúc 22:46

a) Ta có Dx//AB(gt)

nên DE//AB

Ta có: Ay//BC(gt)

nên AE//BD

Xét tứ giác ABDE có AE//BD(cmt) và DE//AB(cmt)

nên ABDE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: \(AB=\frac{BC}{2}\)(Vì BC=2AB)

\(BD=DC=\frac{BC}{2}\)(D là trung điểm của AB)

nên AB=BD=DC

Hình bình hành ABDE có AB=BD(cmt)

nên ABDE là hình thoi(Dấu hiệu nhận biết hình thoi)

b) Ta có: ABDE là hình thoi(cmt)

⇒AE=AB(hai cạnh trong hình thoi ABDE)

mà AB=DC(cmt)

nên AE=DC

Ta có: Ax//BC(gt)

nên AE//DC

Xét tứ giác AECD có AE//CD(cmt) và AE=CD(cmt)

nên AECD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: AEDB là hình thoi(cmt)

nên AB=DE(hai cạnh trong hình thoi AEDB)

\(AB=\frac{BC}{2}\)(BC=2AB)

nên \(DE=\frac{BC}{2}\)

Xét ΔEBC có

ED là đường trung tuyến ứng với cạnh BC(D là trung điểm của BC)

\(DE=\frac{BC}{2}\)(cmt)

Do đó: ΔEBC vuông tại E(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)

⇒BE⊥CE(đpcm)

Bình luận (0)

Các câu hỏi tương tự
LM
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết
DD
Xem chi tiết
HH
Xem chi tiết
TK
Xem chi tiết
HO
Xem chi tiết
DL
Xem chi tiết