a: NK=15cm
b: Xét ΔKNI cso
KM là đường cao
KM là đường trung tuyến
DO đó: ΔKNI cân tại K
c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có
MK chung
\(\widehat{AKM}=\widehat{BKM}\)
Do đó: ΔMAK=ΔMBK
d: Xét ΔKIN có KB/KI=KA/KN
nên AB//IN
a: NK=15cm
b: Xét ΔKNI cso
KM là đường cao
KM là đường trung tuyến
DO đó: ΔKNI cân tại K
c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có
MK chung
\(\widehat{AKM}=\widehat{BKM}\)
Do đó: ΔMAK=ΔMBK
d: Xét ΔKIN có KB/KI=KA/KN
nên AB//IN
Cho tam giác MNP vuông tại M có MN = 3cm. MP = 4cm.
a) Tính độ dài NP.
b) Trên tia MN lấy điểm D sao cho N là trung điểm của MD. Từ N vẽ đường thẳng vuông góc với MD cắt PD tại E. Chứng minh rằng tam giác MDE cân tại E.
c) Trên tia đối của tia EM lấy điểm F sao cho EM = EF. Từ F kẻ FI vuông góc với NE tại I. Chứng minh rằng FI = ND.
d) Chứng minh 3 điểm F, I, P thẳng hàng.
Cho tam giác ABC vuông tại A
a/ Trên tia đối của tia AC lấy điểm D sao cho AD=AC
Chứng minh ΔABC=ΔABD và suy ra tam giác DBC cân tại B
b/ Lấy điểm M thuộc cạnh BD, điểm N thuộc cạnh BC sao cho BM=BN. Chứng minh MN//DC
c/ Trên tia đối của tia CB lấy điểm E sao cho CE=CN. Từ điểm M kẻ đường thẳng song song với BC cắt cạnh CD tại F. Nối ME cắt cạnh CD tại I . Chứng minh IF=IC
Cho tam giác ABC cân tại A, kẻ AH ⊥ BC (M ∈ BC)
a) Chứng minh △AMB = △AMC
b) Trên tia đối của tia MA lấy N sao cho MN = MA, chứng minh BM là tia phân giác của góc ABN.
Cho IHK có IH < IK. Trên cạnh IK lấy M sao cho IM = IH, tia phân giác của HIK cắt cạnh HK tại N a) Chứng minh HN = MN b) Gọi P là giao điểm của 2 đường thẳng IH và MN. Chứng minh PHN =KMN và IPK cân c) Chứng minh tia IN vuông góc với đoạn thẳng PK. Mọi người giúp em với
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a.chứng minh tg MDB=tg NEC
b.gọi I là giao điểm của MN và BC,chứng minh: I là trung điểm của MN
c.Kẻ AH là đường phân giác của góc BAC;đường thẳng kẻ qua I vuông góc với MN cắt AH tại K chứng minh NCK=MBK
Cho tam giác ABC vuông tại A
a/ Trên tia đối của tia AC lấy điểm D sao cho AD=AC
Chứng minh ΔABC=ΔABD và suy ra tam giác DBC cân tại B
b/ Lấy điểm M thuộc cạnh BD, điểm N thuộc cạnh BC sao cho BM=BN. Chứng minh MN//DC
c/ Trên tia đối của tia CB lấy điểm E sao cho CE=CN. Từ điểm M kẻ đường thẳng song song với BC cắt cạnh CD tại F. Nối ME cắt cạnh CD tại I . Chứng minh IF=IC
Cho tam giác ABC vuông tại A ( AB < AC) tia phân giác điểm D sao cho MB = MD từ điểm D vẽ đường thẳng vuông góc với AC tại N và cắt BC tại điểm E. a. Chứng minh tam giác ABM= Tam giác NDM b. Chứng minh BE = DE c. Chứng minh MN = MC