Ôn tập Tam giác

NN

Cho tam giác ABC cân tại A, kẻ AH ⊥ BC (M ∈ BC)

a) Chứng minh △AMB = △AMC

b) Trên tia đối của tia MA lấy N sao cho MN = MA, chứng minh BM là tia phân giác của góc ABN.

H24
10 tháng 5 2022 lúc 14:17

tời ơi:vv AM ⊥ BC

a, Xét Δ AMB và Δ AMC, có :

\(\widehat{AMB}=\widehat{AMC}=90^o\)

AB = AC (Δ ABC cân tại A)

AM là cạnh chung

=> Δ AMB = Δ AMC (c.g.c)

b, Xét Δ AMB và Δ NMB, có :

BM là cạnh chung

MN = MA (gt)

\(\widehat{AMB}=\widehat{NMB}=90^o\)

=> Δ AMB = Δ NMB (c.g.c)

=> AB = NB

Xét Δ ABN, có : AB = NB (cmt)

=> Δ ABN cân tại B

Ta có : MA = MN (gt)

=> M là trung điểm của AN, MB là đường trung trực của AN

Mà Δ ABN cân tại B

=> BM là đường phân giác của Δ ABN

=> BM là tia phân giác của \(\widehat{ABN}\)

Bình luận (0)
KP
10 tháng 5 2022 lúc 14:45

đề sai nên sửa lại chút nhá AM ⊥ BC với lại hình thì bạn tự vẽ.

a, Xét Δ AMB và Δ AMC, có :

AB = AC (Δ ABC cân tại A)

\(\widehat{AMB}=\widehat{AMC}\) ( = 90 độ)

AM là cạnh chung

=> Δ AMB = Δ AMC (c.g.c)

b, Xét Δ AMB và Δ NMB, có :

BM là cạnh chung

\(\widehat{AMB}=\widehat{NMB}\) ( = 90 độ)

MN = MA (gt)

=> Δ AMB = Δ NMB (c.g.c)

=> AB = NB

Xét Δ ABN, có : AB = NB (cmt)

=> Δ ABN cân tại B

Ta có : MA = MN (gt)

=> M là trung điểm của AN, MB là đường trung trực của AN

Mà Δ ABN cân tại B

=> BM là đường phân giác của Δ ABN

=> BM là tia phân giác của \(\widehat{ABN}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BT
Xem chi tiết
AB
Xem chi tiết
PC
Xem chi tiết
IG
Xem chi tiết
NH
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết