Cho tam giác ABC nội tiếp đường tròn tâm O. Phân giác góc BAC cắt (O) ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt ở D và E. Chứng minh BC và DE song song
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt đường tròn ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt tại D và E. Chứng minh: a/ BC song song với DE b/ Tam giác AMB đồng dạng tam giác MCE c/ Tam giác AMC đồng dạng tam giác MDB d/ Nếu AC=CE thì MA^2 = MD.ME
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt đường tròn ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt tại D và E. Chứng minh:
a/ BC song song với DE
b/ Tam giác AMB đồng dạng tam giác MCE
c/ Tam giác AMC đồng dạng tam giác MDB
d/ Nếu AC=CE thì MA^2 = MD.ME
Cho tam giác DEF có ba góc nhọn nội tiếp đường tròn (O) với DE < DF và DH là đường cao. Kẻ phân giác góc D cắt (O) tại P. Qua F kẻ tiếp tuyến với (O) cắt EP kéo dài ở K.
a) Chứng minh DP là tia phân giác của góc ODH
b) PO cắt EF tại M và cắt (O) tại Q. Kẻ OG⊥QFOG⊥QF (G∈QF∈QF) Chứng minh tứ giác OMFG nội tiếp một đường tròn tiếp xúc với đường tròn (O) tại F.
c) Chứng minh rằng: EP = 2OG.
d) Chứng minh rằng: OG.KF = KP.MF.
Cho tam giác ABC nội tiếp đường tròn tâm o (AB<AC) diemrd M l;à trung điểm của cạnh BC . đường phân giác trong góc BAC cắt BC ở D vá cắt đường tròn O ở P ( P khác A ) GỌI E đối xững với D qua M .qua D kẻ đường thẳng vuông góc với BC cắt AO ở H qua E kẻ đường vuông góc với BC cắt AD ở F .gọi K là giao cảu PE và DH
1)CHỨNG MINH TỨ GIÁC DEFK LÀ HÌNH CHỮ NHẬT
2)CHỨNG MINH DB.DC=DA.DP=DH.DK TỪ ĐÓ SUY RA BHCK NỘT TIẾP ĐƯỜNG TRÒN TAM I
3)GỌI T LÀ GIAO AD VÀ (I)9T KHÁC F) CHỨNG MINH HT VUÔNG GÓC VỚI AD
4)ĐƯỜNG TRÒN NGOẠI TIẾP TAM GIÁC MTP CẮT TH Ở Q ( KHÁC T) CHỮNG MINH QA TIẾP XÚC VỚI (O)
Bài 3. Cho tam giác ABC vuông ở A, với AC > AB. Trên AC lấy điểm M, vẽ đường tròn tâm O đường kính MC. Tia BM cắt đường tròn (O) tại D. Đường thẳng qua A và D cắt đường tròn (O) tại S. a) Chứng minh ABCD là tứ giác nội tiếp b) Chứng minh AC là tia phân giác của góc SCB c) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh rằng các đường thẳng BA, EM, CD đồng quy. d) Chứng minh DM là tia phân giác của góc ADE e) Chứng minh M là tâm đường tròn nội tiếp tam giác ADE
cho tam giác nhọn ABC nội tiếp đường tròn tâm O. M là điểm chính giữa cung BC không chứa điểm A. Gọi M' là điểm đối xứng với M qua O. Các đường phân giác trong góc B và góc C của tam giác ABC cắt đường thẳng AM' lần lượt tại E và F.
1/Chứng minh tứ giác BCEF nội tiếp được trong đường tròn
2/Biết đường tròn nội tiếp tam giác ABC có tâm I bán Kính r.
Chứng Minh: IB.IC = 2r.IM
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
Cho tam giác ABC nội tiếp đường tròn O. Tia phan giác góc BAC cắt BC tại I và đường tròn tại P. Kẻ đường kính PQ của đường tròn O. các tia phân giác góc ABC và góc ACB cắt AQ lần lượt tại E,F. chứng minh
a) PC^2=PI.PA
b) 4 điểm B,C,E,F thuộc 1 đường tròn
giúp mk vs ạ:cho tam giác ABC cân nội tiếp đường tròn O. các đường phân giác góc B và góc C cắt nhau ở E và cắt đường tròn lần lượt ở F và D. Chứng minh rằng tứ giác EDAF là hình thoi