\(\Delta ABC=\Delta DEF\Rightarrow AB=DE;AC=DF;BC=EF\\ \Rightarrow P_{ABC}=P_{DEF}=AB+AC+BC=AB+DF+EF=12\left(cm\right)\)
\(\Delta ABC=\Delta DEF\Rightarrow AB=DE;AC=DF;BC=EF\\ \Rightarrow P_{ABC}=P_{DEF}=AB+AC+BC=AB+DF+EF=12\left(cm\right)\)
Cho tam giác DEF có DE = DF. Tia phân giác của góc D cắt EF tại M.
a) Chứng minh: ∆DEM = ∆DFM.
b) Chứng minh DM vuông góc với EF
c) Chứng minh M là trung điểm của cạnh EF.
Cho tam giác ABC đều,lấy điểm D trên cạnh BC sao cho BC=3BD,vẽ DE vuông góc với BC(E thuộc AB),vẽ DF vuông góc với AC(F thuộc AC).Chứng minh rằng tam giác DEF là tam giác đều
cho tam giác cân DEF (DE=DF).Gọi N và M lần lượt là trung điểm của DE và DF,kẻ DH vuông góc với EF tại H a) CM HE=HF b) giả sử DE=DF=5cm,EF=8cm.Tính độ dài đoạn DH
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm.
a) Tính độ dài cạnh BC
b) Vẽ đường phân giác BD của tam giác ABC (D thuộc AC). Vẽ DE vuông góc BC tại E. Chứng minh tam giác ABD = tam giác EBD và Góc BED = 90 độ
c)Hai đường thẳng AB và ĐE cắt nhau tại F. Chứng minh BI là đường trung trực của EF
d) Gọi I là giao điểm của BD và FC. Chứng minh BI là đường trung trực của EF
cho tam giác DEF cân tại D,gọi M là trung điểm EF
a) chứng minh tam giác DEM = tam giác DFM , từ đó chứng minh DM vuông góc EF
b)trên tia đối tia ED lấy điểm K,tia đối của tia FD lấy điểm H sao cho EK=FH.chứng minh tam giác DHK là tam giác cân
c) chứng minh EF // HK
d) gọi I là trung điểm HK .chứng minh D,M,I thẳng hàng
e) chứng minh tam giác HFI = tam giác KEI , từ đó chứng minh tam giác IEF là tam giác cân
f) gọi M là trung điểm EK trên tia đối tia MI lấy điểm N sao cho MI=MN ,chứng minh E,F,N thẳng hàng
Cho tam giác đều ABC. Trên tia đối của tia AB,BC,CA lấy theo thứ tự 3 điểm D,E,F sao cho AD=BE=CF. Chứng minh tam giác DEF là tam giác đều
a) Dùng thước có chia cm và compa vẽ tam giác ABC cân tại B có cạnh đáy bằng 3cm, cạnh bên bằng 4cm
b) Dùng thước có chia cm và compa vẽ tam giác đều ABC có cạnh bằng 3cm