AK

Cho tam giác ABC vuông tại B, đường phân giác góc C cắt AB tại D, đường thẳng kẻ từ A vuông góc với CD kéo dài tại H.

A.Cm tam giác HAD và tam giác BCD đồng dạng

B.Cm AH^2=HD.HC

C.Cho biết AB=6cm,AC=10cm.Tính độ dài đoạn thẳng BC và AD

NT
29 tháng 1 2024 lúc 9:05

a: Xét ΔHAD vuông tại H và ΔBCD vuông tại B có

\(\widehat{HDA}=\widehat{BDC}\)

Do đó; ΔHAD~ΔBCD

b: ta có; ΔHAD~ΔBCD

=>\(\widehat{BCD}=\widehat{HAD}\)

mà \(\widehat{BCD}=\widehat{ACD}\)

nên \(\widehat{HAD}=\widehat{ACD}\)

Xét ΔHAD vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAD}=\widehat{HCA}\)

Do đó: ΔHAD~ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HD}{HA}\)

=>\(HA^2=HD\cdot HC\)

c: Ta có: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(BC^2=10^2-6^2=64\)

=>\(BC=\sqrt{64}=8\left(cm\right)\)

Xét ΔCBA có CD là phân giác

nên \(\dfrac{BD}{BC}=\dfrac{DA}{CA}\)

=>\(\dfrac{BD}{8}=\dfrac{DA}{10}\)

=>\(\dfrac{BD}{4}=\dfrac{DA}{5}\)

mà BD+DA=BA=6cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{DA}{5}=\dfrac{BD+DA}{4+5}=\dfrac{6}{9}=\dfrac{2}{3}\)

=>\(DA=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết
LH
Xem chi tiết
TL
Xem chi tiết
KN
Xem chi tiết
DD
Xem chi tiết
NN
Xem chi tiết
DK
Xem chi tiết