NN

Bài 4. Cho tam giác ABC vuông tại A, biết AB = 21cm, AC = 28cm, đường phân giác AD. Đường thẳng qua D và song song với AB cắt AC tại E. a) Tính độ dài BD, CD, ED. b) Đường thẳng vuông góc với AD tại A cắt BE kéo dài tại F. Tính độ dài BF.

TK
24 tháng 1 2022 lúc 17:24

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

BC2=AB2+AC2=212+282=1225BC2=AB2+AC2=212+282=1225 

Suy ra: BC = 35 (cm)

Vì AD là đường phân giác của ∠∠(BAC) nên:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (t/chất đường phân giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hay Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy DC = BC – BD = 35 – 15 = 20cm

Trong ΔABC ta có: DE // AB

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Bình luận (0)
NT
24 tháng 1 2022 lúc 17:26

a: BC=35(cm)

Xét ΔABC có AD là đường phân giác

nên BD/AB=CD/AC

hay BD/21=CD/28

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{35}{49}=\dfrac{5}{7}\)

Do đó: BD=15(cm); CD=20(cm)

Xét ΔABC có ED//AB

nên ED/AB=CD/CB

=>ED/21=20/35=4/7

=>ED=12(cm)

Bình luận (0)