TD

Cho tam giác ABC vuông tại A,có AB = 3cm,AC = 4cm,đường cao AD

a)Tính độ dài CD

b)Gọi I,K lần lượt là hình chiếu của D trên AB và AC.Chứng minh rằng:AI*AB = AD^2

c)CM rằng: AI*AB = AK*AC

d)CM rằng: tam giác ABC đồng dạng tam giác AKI

GH
22 tháng 6 2023 lúc 18:23

 

a) Ta có:

Diện tích tam giác ABC là S = 1/2 * AB * AC = 1/2 * 3cm * 4cm = 6cm^2. Vì AD là đường cao của tam giác ABC nên diện tích tam giác ABC cũng bằng 1/2 * AB * CD, tức là: S = 1/2 * AB * CD = 3CD.
Từ đó suy ra: CD = 2cm.

b) Gọi E là hình chiếu vuông góc của D trên BC. Ta có:

Tam giác ADE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

Tam giác BDE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AC.
Do đó, ta có:

AI/AB = DE/BC (vì tam giác ADE và tam giác ABC đồng dạng)

DE = AD - AE = AD - CD = AD - 2 (vì tam giác ADE vuông tại E và CD là hình chiếu của AD trên BC)

BC = AB + AC = 3 + 4 = 7
Từ đó suy ra: AI/AB = (AD - 2)/7

Vậy, ta có: AI*AB = (AD - 2)AB/7 = ADAB/7 - 2AB/7 = AD^2/3 - 2/7.

c) Gọi F là hình chiếu vuông góc của D trên AB. Ta có:

Tam giác ADF và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

Tam giác CDF và tam giác ABC đồng dạng với tỉ số đồng dạng CD/AC.
Do đó, ta có:

AI/AB = DF/AF (vì tam giác ADF và tam giác ABC đồng dạng)

AK/AC = CF/AF (vì tam giác CDF và tam giác ABC đồng dạng)

DF + CF = CD = 2

AF = AB - BF = AB - AK = 3 - AK (vì BF là hình chiếu của B trên AC và AK là hình chiếu của D trên AC)

Từ đó suy ra: AI/AB = DF/(DF + CF) = DF/2 = (AD^2 - AF^2)/(2AD^2) = (AD^2 - (AB - AK)^2)/(2AD^2) = (2AK*AC - AK^2)/(2AD^2) = AK/AD - AK^2/(2AD^2).

Từ b) và c), ta có: AIAB = AD^2/3 - 2/7 = AKAC*(1 - AK^2/(2AD^2)).

d) Gọi H là hình chiếu vuông góc của I trên BC. Ta có:

Tam giác ADH và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.

Tam giác IDH và tam giác ABC đồng dạng với tỉ số đồng dạng AI/AC.
Do đó, ta có:

ID/AI = DH/AB (vì tam giác IDH và tam giác ABC đồng dạng)

DH = CD - CH = 2 - CI (vì tam giác ADH vuông tại H và CI là hình chiếu của I trên BC)

AB = 3, AC = 4, BC = 7

Từ đó suy ra: ID/AI = (CD - CH)/AB = (2 - CI)/3.

Do đó, ta có: ID/AI = (2 - CI)/3 = (2 - AK)/4 (vì AIAB = AKAC từ c))

Từ đó suy ra: ID = (2AI - 3AK)/4.

Vậy, ta có: ID/AI = (2AI - 3AK)/(4AI) = 1 - 3AK/(2AI) = 1 - DH

18:22    
Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
LL
Xem chi tiết
PB
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
MB
Xem chi tiết
TN
Xem chi tiết
YJ
Xem chi tiết
HD
Xem chi tiết