HD

Cho tam giác ABC vuông tại A, AB<AC, đường cao AH.
a) Giả sử BH = 4 cm, CH = 5 cm. Tính độ dài AB và số đo góc B (làm tròn đến độ) b) Trên cạnh AC lấy điểm D (D khác A và C). Gọi K là hình chiếu của A trên BD.
Chứng minh: BK.BD=BH.BC và tam giác BKH đồng dạng với tam giác BCD. c) Chứng minh: 4 điểm A, B, K, H cùng thuộc một đường tròn. Xác định tâm O của đường tròn đó.
d) Gọi M và N lần lượt là hình chiếu của A và B trên HK. E là giao điểm thức hai của đường thẳng AM với (O). Chứng minh BE // MN.

help mik câu C D với :(

NT
10 tháng 11 2023 lúc 22:02

a: BH+CH=BC

=>BC=4+5

=>BC=9(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)(1)

=>\(BA=\sqrt{4\cdot9}=6\left(cm\right)\)

Xét ΔABH vuông tại H có \(cosB=\dfrac{BH}{BA}=\dfrac{4}{6}=\dfrac{2}{3}\)

nên \(\widehat{B}\simeq48^0\)

b: Xét ΔADB vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)

c: Xét tứ giác AKHB có \(\widehat{AKB}=\widehat{AHB}=90^0\)

=>AKHB là tứ giác nội tiếp đường tròn đường kính AB

Tâm O là trung điểm của AB

Bình luận (1)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
LC
Xem chi tiết
TN
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết