Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có: AM là đường trung tuyến.
\(\Rightarrow AM=BM=CM=\dfrac{BC}{2}\)
\(\Rightarrow BC=2AM=2.5=10\left(cm\right)\)
Xét \(\Delta ABC\left(\widehat{BAC}=90^o\right)\) có AH là đường cao.
\(\Rightarrow AH^2=BH.CH\Rightarrow3^2=BH.CH\)
\(\Leftrightarrow BH.CH=9\left(cm\right)\)
mà \(BH+CH=BC=10\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}BH.CH=9=1.9\\BH.CH=10=1+9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=1\left(cm\right)\\CH=9\left(cm\right)\end{matrix}\right.\Rightarrow BC=10\left(cm\right)\)
Vậy, ...