DT

Cho tam giác ABC vuông tại A , vẽ tia phân giác BM của góc B ( M thuộc AC ) . Trên BC xác định điểm N sao cho BA = BN 

a , CMR tam giác ABM = tam giác NBM   

b,So sánh AM và MC   

c,Trên tia đối của tia AB lấy điểm E sao cho AE=CN.Gọi I là trung điểm của CE.CMR : B,M,I thẳng hàng

HP
20 tháng 2 2023 lúc 17:30

a) Ta có: $\widehat{ABM} = \widehat{NBM}$ (vì $BN = BA$) và $\widehat{BMA} = \widehat{NMB}$ (vì BM là phân giác của $\widehat{B}$). Vậy tam giác $ABM$ và tam giác $NBM$ có hai góc bằng nhau nên chúng đồng dạng.

b) Ta có $BN = BA$, suy ra tam giác $ABN$ đều, do đó $\widehat{NAB} = 60^\circ$. Ta có thể tính được $\widehat{BAC} = 90^\circ - \widehat{CAB} = 90^\circ - \widehat{ABN} = 30^\circ$. Khi đó, $\widehat{AMC} = \widehat{A} + \widehat{BAC} = 90^\circ + 30^\circ = 120^\circ$.

Do đó, tam giác $AMC$ là tam giác cân tại $A$ vì $\widehat{AMC} = 120^\circ = 2\cdot \widehat{ABC}$ (do tam giác $ABC$ vuông tại $A$). Khi đó, $AM = MC$.

c) Ta có $\widehat{CAB} = 30^\circ$, nên tia đối của $AB$ là tia $AH$ cũng là phân giác của $\widehat{A}$. Gọi $E'$ là trên $AH$ sao cho $AE' = CN$. Khi đó, ta có thể chứng minh $E'$ trùng với $E$, tức là $E'$ nằm trên đoạn thẳng $CE$ và $CE' = EI$.

Đặt $x = BE = BC$. Ta có $AN = AB = BN = x$, do đó tam giác $ABN$ đều và $\widehat{ANB} = 60^\circ$. Khi đó, ta có $\widehat{A} + \widehat{M} + \widehat{N} = 180^\circ$, hay $\widehat{M} + \widehat{N} = 90^\circ$.

Ta có $\dfrac{AE'}{CE'} = \dfrac{AN}{CN} = 1$, do đó $AE' = CE' = x$. Khi đó, tam giác $ACE'$ đều và $\widehat{ACE'} = 60^\circ$. Ta có thể tính được $\widehat{C} = 180^\circ - \widehat{A} - \widehat{B} = 60^\circ$, nên tam giác $ABC$ đều và $AC = x$.

Do $AM = MC$, ta có $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2}$. Ta cũng có $\widehat{B} + \widehat{N} + \widehat{C} = 180^\circ$, hay $\widehat{N} = 180^\circ - \widehat{A} - \widehat{B} - \widehat{B} - \widehat{C}$

Do đó, $\widehat{N} = 180^\circ - \widehat{A} - 90^\circ - \widehat{C} = 90^\circ - \widehat{B}$

Vậy $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2} = \dfrac{\widehat{B}}{2}$

Suy ra tam giác ABM và NBM có cùng một góc ở đỉnh M, và hai góc còn lại lần lượt bằng $\dfrac{\widehat{A}}{2}$ và $\dfrac{\widehat{C}}{2}$, nên chúng đồng dạng. Do đó, ta có $ABM = NBM$.

Về phần b, do $AM = MC$, ta có $AMC$ là tam giác cân tại $M$, hay $BM$ là đường trung trực của $AC$. Vì $BN$ là đường phân giác của $\widehat{B}$, nên ta có $BM$ cũng là đường phân giác của tam giác $\triangle ABC$. Do đó, $BM$ là đường phân giác của $\widehat{BAC}$, hay $\widehat{BAM} = \widehat{MAC} = \dfrac{\widehat{BAC}}{2}$. Vậy $\widehat{BAM} + \widehat{ABM} = \dfrac{\widehat{BAC}}{2} + \dfrac{\widehat{A}}{2} = 90^\circ$, hay tam giác $\triangle ABM$ là tam giác vuông tại $B$.

Về phần c, vì $AE = CN$, ta có tam giác $\triangle AEC$ là tam giác cân tại $E$, nên $EI$ là đường trung trực của $AC$. Do đó, $\widehat{BIM} = \widehat{BIE} + \widehat{EIM} = \widehat{BCM} + \widehat{CAM} = \dfrac{\widehat{B}}{2} + \dfrac{\widehat{C}}{2}$. Tuy nhiên, ta đã chứng minh được $\widehat{MAC} = \dfrac{\widehat{B}}{2}$, nên $\widehat{BIM} = \widehat{MAC} + \dfrac{\widehat{C}}{2}$. Do đó, $B, M, I$ thẳng hàng.

Bình luận (2)
NT
20 tháng 2 2023 lúc 22:31

a: Xét ΔABM va ΔNBM có

BA=BN

góc ABM=góc NBM

BM chung

=>ΔABM=ΔNBM

b: ΔABM=ΔNBM

=>MA=MN

mà MN<MC

nên MA<MC

c: Xet ΔMAE vuông tại A và ΔMNC vuông tại N có

MA=MN

AE=NC

=>ΔMAE=ΔMNC

=>ME=MC

=>M nằm trên trung trực của CE

mà BI là trung trựccủa CE
nen B,M,I thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
TV
Xem chi tiết
PL
Xem chi tiết
LN
Xem chi tiết
BM
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
PN
Xem chi tiết
VN
Xem chi tiết