UJ

Cho tam giác ABC vuông tại A và AB<AC. Gọi AD là đường phân giác của tam giác ABC. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại điể E. Chứng minh: BD=DE

ai nhanh mình tick ạk

 

ND
16 tháng 4 2017 lúc 7:59

A B C D E H K

Ta vẽ thêm: Từ điểm D kẻ 2 đường thẳng vuông góc với AB tại H và vuông góc với AC tại K.

Do AD là phân giác của ^BAC=> ^BAD=^DAC. Vì H thuộc AB và K thuộc AC=> ^HAD=^KAD

Xét tam giác ADH và tam giác ADK có: 

^AHD=^AKD=90o

Cạnh AD chung       => Tam giác ADH = Tam giác ADK ( Cạnh huyền góc nhọn)

^HAD=^KAD

=> DH=DK (2 cạnh tương ứng)

Ta có; Tam giác ABC vuông tại A=> ^ABC+^ACB=90o (2 góc nhọn trong tam giác vuông phụ nhau)

hay: ^HBD+^DCE=90o (Do H thuộc AB, D thuộc BC và E thuộc AC) (1)

Vì DE vuông góc với BC tại D=> Tam giác EDC là tam giác vuông tại D

=> ^DEC+^DCE=90o (phụ nhau) (2)

Từ (1) và (2) => ^HBD+^DCE=^DEC+^DCE=90o => ^HBD=^DEC=90o - ^DCE

Hay có thể nói: ^HBD=^DEK (K thuộc AC)

Xét tam giác BHD: ^BHD+^HBD+^HDB=180o (t/c cộng góc) (3)

Tương tự tam giác EKD: ^EKD+^KED+^EDK=180o (4)

Từ (3) và (4) => ^BHD+^HBD+^HDB=^EKD+^DEK+^EDK=180o (5)

Mà: ^BHD=^EKD=90o ; ^HBD=^DEK (Đã CM) (6)

Từ (5) và (6) => ^HDB=^EDK (Trừ 2 vế cho 2 cặp góc bằng nhau)

Xét tam giác BHD và tam giác EKD:

^BHD=^EKD=90o

DH=DK (CM trên)         => Tam giác BHD = Tam giác EKD (g.c.g)

^HDB=^EDK (CM trên)

=> BD=DE (2 cạnh tương ứng) (đpcm)

**** cho mình nha !

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TL
Xem chi tiết
LH
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
DP
Xem chi tiết