Cho tam giác ABC vuông tại A. Gọi D,E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh rằng:
a. DE//AC, DF//AB.
b. Tứ giác AEDF là hình chữ nhật.
c. Gọi M và N lần lượt là các điểm đối xứng với D qua AB và AC. Chứng minh M đối xúng với N qua A.
Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, Q lần lượt là trung điểm của các cạnh AB, BC, CA.
a) Chứng minh AMNQ là hình chữ nhật
b) Lấy điểm K đối xứng với điểm N qua điểm Q, điểm I đối xứng với điểm N qua M. Chứng minh hai điểm I và K đối xứng nhau qua điểm A.
c) Kẻ đường cao AH của tam giác ABC. Chứng minh tứ giác MHNQ là hình thang cân
d) Khi AB cố định còn điểm C di động trên tia Ax vuông góc với AB, thì tâm của hình chữ nhật AMNQ chạy trên đường nào?
Cho ∆ABC vuông tại A( AB < AC).Gọi D, E lần lượt là trung điểm của BC và AC
Chứng minh tứ giác ABDE là hình thang vuông.
Gọi K là điểm đối xứng của A qua D. Chứng minh tứ giác ABKC là hình chữ nhật.
Gọi M là điểm đối xứng của A qua BC. Chứng minh tứ giác BMKC là hình thang cân
Cho tam giác vuông ABC (A = 90°). Lấy M bất kì trên cạnh BC. Gọi E, F lần lượt là các điểm đối xứng với M qua AB và AC. Gọi I, K lần lượt là giao điểm của MẸ với AB và MF với AC. Chứng minh:
a) MIAK là hình chữ nhật.
b) A là trung điểm của EF.
Cho hình chữ nhật ABCD ( AB AD > ), gọi M là trung điểm cạnh AB . Từ M kẻ MN ^ CD tại N . 1) Chứng minh tứ giác AMND là hình chữ nhật. 2) Gọi K là điểm đối xứng của D qua M . a) Tứ giác AKBD là hình gì? Giải thích? b) Chứng minh B là trung điểm của đoạn thẳng KC
Cho ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm AB, AC, BC a/ Chứng minh DF // AC và cho biết tứ giác ADFC là hình gì, vì sao ? b/ Chứng minh ADFE là hình chữ nhật. So sánh AF và DE c/ Gọi K là điểm đối xứng của F qua tâm E. Chứng minh AFCK là hình thoi.
Cho tam giác ABC vuông tại A, điểm d thuộc cạnh BC, gọi E và F lần lượt là hình chiếu của D trên AB và AC a) Chứng minh tứ giác AEDF là hình chữ nhật b) gọi I là trung điểm của EF. Chứng minh A,I,D thẳng hàng
Bài 2. Cho tam giác ABC vuông tại A. Một đường thẳng song song với BC cắt hai cạnh AB và
AC lần lượt tại D và E. Gọi M và N lần lượt là trung điểm của DE và BC. Chứng minh rằng:
a) Ba điểm A, M, N thẳng hàng;
b) MN =
2
BC DE
Bài 3. Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HE AB; HF AC. Từ A vẽ một
đường thẳng vuông góc với EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC.