HN

cho tam giác ABC vuông tại A , góc C = 30 độ kẻ AH vuông góc BC tại H . Trên HC lấy D sao cho HD=HB. Từ C kẻ CE vuông góc AD tại E ( E thuộc AD)
a)  CM: tam giác ABD là tam giác đều
b) CM: EH || AC

NT
20 tháng 11 2023 lúc 19:22

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+30^0=90^0\)

=>\(\widehat{ABC}=60^0\)

Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

Xét ΔABD cân tại A có \(\widehat{B}=60^0\)

nên ΔABD đều

b: ΔABD đều

=>\(\widehat{BAD}=60^0\)

\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)

=>\(\widehat{CAD}+60^0=90^0\)

=>\(\widehat{CAD}=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

\(\widehat{HDA}=\widehat{EDC}\)

Do đó: ΔDHA=ΔDEC

=>DE=DH

Xét ΔDEH và ΔDAC có

\(\dfrac{DE}{DA}=\dfrac{DH}{DC}\)(DE=DH; DA=DC)

\(\widehat{EDH}=\widehat{ADC}\)

Do đó: ΔDEH đồng dạng với ΔDAC

=>\(\widehat{DEH}=\widehat{DAC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên EH//AC

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TT
Xem chi tiết
LD
Xem chi tiết
NL
Xem chi tiết
DL
Xem chi tiết
LH
Xem chi tiết
LL
Xem chi tiết
BE
Xem chi tiết
LT
Xem chi tiết