NA

Cho tam giác ABC vuông tại A, có góc C = 30 độ, kẻ AH vuông góc BC (H thuộc BC). Trên đoạn HC lấy điểm D sao cho HD = HB.

a) Chứng minh tam giác AHB = tam giác AHD.

b) Chứng minh tam giác ABD là tam giác đều.

c) Từ C kẻ CE vuông góc với AD (E thuộc AD). Chứng minh DE = HB.
d) Từ D kẻ DF vuông góc với AC ( F thuộc AC), I là giao điểm của CE và AH. Chứng minh I, D, F thẳng hàng.

NT
14 tháng 8 2023 lúc 1:59

a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có

AH chung

HB=HD

=>ΔAHB=ΔAHD

=>AB=AD

b: Xét ΔABD có

AB=AD

góc B=60 độ

=>ΔABD đều

c: Xét ΔDAC có góc DAC=góc DCA=30 độ

nên ΔDAC cân tại D

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>AH=EC

d: Xét ΔCIA có

CH,AE là đường cao

CH cắt AE tại D

=>D là trực tâm

=>ID vuông góc AC

mà DF vuông góc AC

nên I,D,F thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
TT
Xem chi tiết
DP
Xem chi tiết
VT
Xem chi tiết
NA
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
NG
Xem chi tiết