Chương II - Đường tròn

LL

Cho tam nhọn ABC có trực tâm H và nội tiếp đường tròn (O) đường kính AD = 2R.
a) Chứng minh tứ giác BHCD là hình hình hành.
b) Kẻ OI vuông góc với BC tại I. Chứng minh I, H, D thẳng hàng.
c) Chứng minh AH = 2OI                                                                                                                                                                                  d)\(AH^2+BC^2\)=4\(R^2\)

 

NH
19 tháng 8 2021 lúc 21:27

a) Ta có:

\(CD\perp AC\)(góc nội tiếp chắn nửa đường tròn)

Và \(BH\perp AC\)(do H là trực tâm tam giác ABC)

Suy ra CD // BH.    (1)

Lại có:

\(BD\perp AB\)(góc nội tiếp chắn nửa đường tròn)

Và \(CH\perp AB\)(do H là trực tâm tam giác ABC)

Nên BD // CH.  (2)

Từ (1) và (2) suy ra tứ giác BHCD là hình bình hành.

b) Vì tứ giác BHCD là hình bình hành nên BC và HD cắt nhau tại trung điểm của mỗi đoạn. Mà I là trung điểm của BC nên I là trung điểm của HD. Suy ra, I, H, D thẳng hàng.(đpcm)

c)  Xét tam giác AHD có:

O là trung điểm của AD, I là trung điểm của HD nên AH = 2OI(tính chất đường trung bình trong tam giác)(đpcm)

Ta có:

\(AH^2+BC^2=4OI^2+4BI^2=4OB^2=4R^2\)(đpcm)

Bình luận (0)
NT
19 tháng 8 2021 lúc 21:19

a: Xét ΔABC có

H là trực tâm 

nên CH\(\perp AB\left(1\right)\) và BH\(\perp AC\left(3\right)\)

Xét \(\left(O\right)\) có

ΔABD nội tiếp đường tròn

AD là đường kính

Do đó: ΔBDA vuông tại B

hay BD\(\perp AB\left(2\right)\)

Xét \(\left(O\right)\) có 

ΔACD nội tiếp đường tròn

AD là đường kính

Do đó: ΔACD vuông tại C

hay CD\(\perp AC\left(4\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BD//CH

Từ \(\left(3\right),\left(4\right)\) suy ra CD//BH

Xét tứ giác BHCD có 

BD//CH

CD//BH

Do đó: BHCD là hình bình hành

Bình luận (0)

Các câu hỏi tương tự
GN
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
VB
Xem chi tiết
OG
Xem chi tiết
HT
Xem chi tiết
DT
Xem chi tiết
TH
Xem chi tiết