VC

Cho tam giác ABC vuông tại A. đường cao AH, trung tuyến AM(H,M thuộc BC). Gọi D E theo thứ tự là hình chiếu của điểm M trân AB, AC a,Chứng minh rằng tứ giácADHE là hình chữ nhật
b, Chứng minh AM vuông góc với DE 
c,Biết AB = 6 cm AC bằng 8 cm.Tính DE
d,Gọi N là giao điểm của AM và HE,K là hình chiếu của điểm M trên AB.Chứng minh rằng ba đường thẳng MK,BN,AH đồng quy

 

NT
18 tháng 12 2023 lúc 21:57

a:

Sửa đề: Là hình chiếu của trên AB,AC

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MC

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: ADHE là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{HAD}\right)\)

nên \(\widehat{AED}=\widehat{ABC}\)

\(\widehat{AED}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM\(\perp\)DE

c: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Ta có: ADHE là hình chữ nhật

=>AH=DE

mà AH=4,8cm

nên DE=4,8cm

 

Bình luận (0)

Các câu hỏi tương tự
KD
Xem chi tiết
NM
Xem chi tiết
NP
Xem chi tiết
DN
Xem chi tiết
PH
Xem chi tiết
PT
Xem chi tiết
DT
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết