KI

Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=9cm, AC=12cm
a) Tính AH,HB,HC
b) Từ h kẻ HE vương goác với AB(E thuộc AB). C/m HB.HC=AE.AB
c) Tia phân giác của BAC cắt BC tại D. Tính DB,DC
d) Từ H kẻ HF vuông góc với AC(F thuộc AC). C/m tan^3C = EB/FC

NT
26 tháng 8 2021 lúc 22:57

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC,ta được:

\(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5,4\left(cm\right)\\CH=9,6\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
NT
26 tháng 8 2021 lúc 23:09

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HB\cdot HC=AE\cdot AB\)

Bình luận (0)

Các câu hỏi tương tự
KI
Xem chi tiết
LM
Xem chi tiết
LL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
PB
Xem chi tiết
XN
Xem chi tiết
NK
Xem chi tiết