Cho tam giác ABC có góc A = 90 độ, AC > AB, kẻ AH vuông góc với BC, trên tia HC lấy điểm D sao cho HD = HB, kẻ CE vuông góc với AD kéo dài (E thuộc AD).
a) Chứng minh tam giác ABD cân.
b) Chứng minh góc DAH = góc ACB.
c) Chứng minh CB là tia phân giác góc ACE.
d) Chứng minh DI vuông góc AC (I thuộc AC) và ba đường AH, ID và CE đồng quy.
e) So sánh AC và CD.
f) Tìm điều kiện của tam giác ABC để I là trung điểm của AC.
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: ΔABD cân tại A
=>góc ADH=góc ABH
mà góc ABH=góc HAC
nên góc ADH=góc HAC
ΔABD cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAD
=>góc BAH=góc DAH
mà góc BAH=góc ACB
nên góc DAH=góc ACB
c: Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
góc HDA=góc EDC
=>ΔDHA đồng dạng với ΔDEC
=>góc ECD=góc HAD
=>góc ECB=góc ACB
=>CB là phân giác của góc ACE
e: ΔBAD cân tại A
=>góc ADB<90 độ
=>góc ADC>90 độ
Xét ΔADC có góc ADC>90 độ
nên AC là cạnh lớn nhất
=>AC>CD