Bài 8: Các trường hợp đồng dạng của tam giác vuông

VK

Cho tam giác ABC vuông tại A có AH là đường cao.AB=15 AH=12
a) CM tam giác AHB đồng dạng tam giác CHA
b)Tính BH,HC,AC
c)Vẽ AM là tia phân giác góc BAC. Tính BM
d) Lấy E trên AC sao cho HE song song AB. Gọi N là trung điểm của AB,CN cắt nhau tại I. Chứng minh I là trung điểm của HE

UT
24 tháng 4 2021 lúc 22:21

tự vẽ hình nhé 

a, ta có <HBA+<BAH =90 

              <BAH + <HAC=90

\(\Rightarrow\) <HBA=<HAC 

xét \(\Delta AHB\) và \(\Delta CHA\)

<HBA=<HAC 

<BHA=<CHA=90

\(\Rightarrow\Delta AHB\) ~\(\Delta CHA\)

b, Xét \(\Delta ABH\)  vg tại H, áp dụng đl Py ta go ta đc 

\(AH^2+BH^2=AB^2\\ \Rightarrow BH=9\)

Ta có \(\Delta ABH\) ~ \(\Delta CAH\)

\(\dfrac{\Rightarrow BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH\cdot CH\)

\(\Rightarrow CH=16\)

Xét \(\Delta AHC\) cg tại H, áp dụng ĐL py ta go ta đc 

     \(AH^2+CH^2=AC^2\Rightarrow AC=20\) 

c, xét \(\Delta ABC\) vg tại A áp dụng đl Py ta go ta đc 

\(AB^2+AC^2=BC^2\Rightarrow BC=25\)

Ta có AM là tia  pg của <BAC 

\(\dfrac{MB}{AB}=\dfrac{MC}{AC}\Rightarrow\dfrac{MB+MC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{7}\\ \Rightarrow MB=10,7\)

 

 

Bình luận (0)
NT
24 tháng 4 2021 lúc 22:50

a) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{CAH}\right)\)

Do đó: ΔAHB\(\sim\)ΔCHA(g-g)

Bình luận (0)
NT
24 tháng 4 2021 lúc 22:50

b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=15^2-12^2=81\)

hay BH=9(cm)

Vậy: BH=9cm

Bình luận (0)
NT
24 tháng 4 2021 lúc 22:51

b) Ta có: ΔAHB\(\sim\)ΔCHA(cmt)

nên \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{12}{CH}=\dfrac{9}{12}\)

hay CH=16(cm)

Vậy: CH=16cm

Bình luận (0)
NT
24 tháng 4 2021 lúc 22:52

b) Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

hay AC=20(cm)

Vậy: AC=20cm

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
NS
Xem chi tiết
QT
Xem chi tiết
VV
Xem chi tiết
8M
Xem chi tiết