Ôn tập Tam giác

KN

Cho tam giác ABC vuông tại A, (AC > AB) gọi M là trung điểm của Cạnh AC. Trên tia đối của tia MB, lấy điểm MB=MD a) chứng minh tam giác ABM =tam giác CDM b) Chứng minh AC vuông CD

NT
18 tháng 3 2021 lúc 20:41

a) Xét ΔABM và ΔCDM có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔABM=ΔCDM(c-g-c)

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(gt)

nên \(\widehat{MCD}=90^0\)

\(\Leftrightarrow\widehat{ACD}=90^0\)

hay AC\(\perp\)CD(Đpcm)

Bình luận (2)

Các câu hỏi tương tự
NP
Xem chi tiết
NG
Xem chi tiết
LL
Xem chi tiết
K1
Xem chi tiết
H24
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết
CF
Xem chi tiết