H24

Cho tam giác ABC vuông tại A (AB<AC), kẻ BD là phân giác của góc ABC (D thuộc AC). Vẽ DE vuông góc với BC tại E. a) Chứng minh tam giác ABD = tam giác EBD. b) AE cắt BD tại I. Chứng minh BD vuông góc với AE và I là trung điểm AE. c) Cẽ tia Cx vuông góc với tia BD tại H. Trên tia đối của tia AB lấy điểm F sao cho AF = EC. Chứng minh 3 điểm C,H,F thẳng hàng và AE // FC.

NQ
16 tháng 12 2023 lúc 20:09

a) Ta có:

- Góc ABD là góc giữa hai phân giác của góc ABC, nên ABD = CBD.

- Góc EBD là góc giữa phân giác của góc ABC và đường thẳng DE, nên EBD = CBD.

Vậy tam giác ABD = tam giác EBD.

 

b) Ta có:

- Góc ABD = góc EBD (do chứng minh ở câu a).

- Góc ADB = góc EDB (do cùng là góc vuông).

- Vậy tam giác ABD = tam giác EBD (do hai góc bằng nhau và góc giữa hai cạnh bằng nhau).

- Do đó, BD vuông góc với AE.

- Ta có AE cắt BD tại I, vậy I là trung điểm của AE.

 

c) Ta có:

- Tia Cx vuông góc với tia BD tại H.

- Trên tia đối của tia AB, lấy điểm F sao cho AF = EC.

- Ta cần chứng minh 3 điểm C, H, F thẳng hàng và AE // FC.

- Vì AF = EC và tam giác ABD = tam giác EBD (do chứng minh ở câu a), nên tam giác AFB = tam giác EFC (do hai cạnh bằng nhau và góc giữa hai cạnh bằng nhau).

- Vậy 3 điểm C, H, F thẳng hàng và AE // FC.

Bình luận (0)
NT
16 tháng 12 2023 lúc 20:10

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED

=>BA=BE và DA=DE

Ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD vuông góc với AE tại trung điểm I của AE

c: Xét ΔBFC có \(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)

nên AE//CF

Ta có: BD\(\perp\)AE

AE//CF

Do đó: BD\(\perp\)CF

mà BD\(\perp\)CH

và CH,CF có điểm chung là C

nên C,H,F thẳng hàng

Bình luận (0)
NQ
16 tháng 12 2023 lúc 20:12

loading...

Bình luận (0)

Các câu hỏi tương tự
PM
Xem chi tiết
TY
Xem chi tiết
SC
Xem chi tiết
CV
Xem chi tiết
PN
Xem chi tiết
BP
Xem chi tiết
NK
Xem chi tiết
NT
Xem chi tiết
ND
Xem chi tiết