DD

Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, đường trung tuyến AM (H, M thuộc BC)

1, Cho AB = 6, BC = 10. Tính BH và sin góc ACB

2, Gọi D là điểm đối xứng của A qua M. Chứng mình rằng CD2 = BH.BC

3, Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của 2 đường thẳng CT và BQ. Chứng mình rằng T là trực tâm của tam giác BCQ

 

NT
10 tháng 10 2021 lúc 21:37

2: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: CD=AB(1)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB^2=BH\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(CD^2=BH\cdot BC\)

Bình luận (0)

Các câu hỏi tương tự
AN
Xem chi tiết
NA
Xem chi tiết
VT
Xem chi tiết
NS
Xem chi tiết
KT
Xem chi tiết
PB
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
TT
Xem chi tiết