PB

Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn ( ) O . Gọi M là trung điểm của cạnh BC N là điểm đối xứng của M qua O . Đường thẳng qua A vuông góc với AN cắt đường thẳng qua B vuông góc với BC tại D . Kẻ đường kính AE . Chứng minh rằng:

b)      CD đi qua trung điểm của đường cao AH của tam giác ABC .

CT
10 tháng 8 2017 lúc 9:17

b)    CD đi qua trung điểm của đường cao AH của D ABC

· Gọi F là giao của BD CA.

Ta có BD.BE= BA.BM (cmt)

= > B D B A = B M B E = > Δ B D M ~ Δ B A E ( c − g − c ) = > B M D = B E A

Mà BCF=BEA(cùng chắn AB)

=>BMD=BCF=>MD//CF=>D là trung điểm BF

· Gọi T là giao điểm của CD AH .

DBCD TH //BD  = > T H B D = C T C D  (HQ định lí Te-let) (3)

DFCD TA //FD  = > T A F D = C T C D  (HQ định lí Te-let) (4)

BD= FD (D là trung điểm BF ) (5)

· Từ (3), (4) và (5) suy ra TA =TH ÞT là trung điểm AH .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PH
Xem chi tiết
AN
Xem chi tiết
DT
Xem chi tiết
PH
Xem chi tiết
VT
Xem chi tiết
VT
Xem chi tiết
LQ
Xem chi tiết
TT
Xem chi tiết