MA

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm D sao cho BD = BA. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại M, cắt tia BA tại N. Gọi I là trung điểm của CN. Chứng minh ba điểm B, M, I thẳng hàng.

NT
23 tháng 12 2023 lúc 21:46

Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

BA=BD

Do đó: ΔBAM=ΔBDM

=>MA=MD

Xét ΔMAN vuông tại A và ΔMDC vuông tại D có

MA=MD

\(\widehat{AMN}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔMAN=ΔMDC

=>AN=DC và MN=MC

Ta có: BA+AN=BN

BD+DC=BC

mà BA=BD và AN=DC

nên BN=BC

=>B nằm trên đường trung trực của NC(1)

ta có: MN=MC

=>M nằm trên đường trung trực của NC(2)

Ta có: IN=IC

=>I nằm trên đường trung trực của NC(3)

từ (1),(2),(3) suy ra B,M,I thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
SC
Xem chi tiết
VV
Xem chi tiết
LT
Xem chi tiết
NM
Xem chi tiết
HG
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DM
Xem chi tiết