H24

tam giác ABC,góc A=90 độ,AB=30cm ,BC=5cm Trên cạnh BC lấy  D sao cho BD=3cm .Đường thẳng vuông góc vớ BC tại D cắt AC tại M cắt BA tại N
a)tính AC và so sánh các góc của ABC
b)CMR:MA=MD và tam giác MNC cân
c)gọi I là trung điểm của CN chứng minh rằng B,M.I thẳng hàng
 

NT
8 tháng 4 2022 lúc 18:09

a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BA=BD

BM chung

Do đó: ΔBAM=ΔBDM

Suy ra: MA=MD

Xét ΔAMN vuông tại A và ΔDMC vuông tại D có

MA=MD

\(\widehat{AMN}=\widehat{DMC}\)

Do đó: ΔAMN=ΔDMC

Suy ra: MN=MC

hay ΔMNC cân tại M

Bình luận (1)