3T

Cho tam giác ABC vuông góc tại A có D,E lần lượt là trung điểm của AC,BC gọi F là điểm đối xứng của E qua D.
a) Chứng minh tứ giác ABED là hình thang vuông.
b) Chứng minh tứ giác AECF là hình thoi.
c) Vẽ HE vuông góc với AB tại H. HE vuông góc với AB tại H,Chứng minh tứ giác ABEH là hình chữ nhật.

NT
10 tháng 1 2022 lúc 8:13

a: Xét ΔABC có 

D là trung điểm của AC

E là trung điểm của BC

Do đó; DE là đường trung bình

=>DE//AB

Xét tứ giác ABED có DE//AB

nên ABED là hình thang

mà \(\widehat{DAB}=90^0\)

nên ABED là hình thang vuông

b: Xét tứ giác AECF có 

D là trung điểm của AC

D là trung điểm của FE

Do đó: AECF là hình bình hành

mà EA=EC
nên AECF là hình thoi

c: Đề sai rồi bạn

Bình luận (0)
DL
10 tháng 1 2022 lúc 8:29

a, xét tam giác ABC có đường t/b ED:

=>ED//AB

xét tứ giác ABED có :

ED//AB 

BAC = 90\(^o\)

vậy ABED là hình thang vuông.

b, vì F đối xứng với E qua D nên:

ED=DF(1)

vì D là trung điểm AC nên:

AD=DC(2)

từ (1) và (2) suy ra :

tứ giác AECF là hình thoi.

c,vì ED //AB 

mà AB vuông góc Ac

=>ED vuông góc AC

<=>EDA là góc vuông 

xét tứ giác ABEH có :

\(EHA=BAC=EDA=90^o\)

vậy ABEH là hình chữ nhật.

Bình luận (0)

Các câu hỏi tương tự
3T
Xem chi tiết
2N
Xem chi tiết
TN
Xem chi tiết
PN
Xem chi tiết
BV
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
FB
Xem chi tiết
BT
Xem chi tiết