Đầu tiên, ta đã biết nếu I là trọng tâm tam giác ABC thì \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\) (1)
Biến đổi biểu thức đề bài:
\(2\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\)
\(\Leftrightarrow\overrightarrow{MC}+\overrightarrow{CA}+\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{CA}\Leftrightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\) (2)
Trừ vế với vế của (1) và (2)
\(\overrightarrow{IA}-\overrightarrow{MA}+\overrightarrow{IB}-\overrightarrow{MB}+\overrightarrow{IC}-\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{IA}+\overrightarrow{AM}+\overrightarrow{IB}+\overrightarrow{BM}+\overrightarrow{IC}+\overrightarrow{CM}=\overrightarrow{0}\Leftrightarrow\overrightarrow{IM}+\overrightarrow{IM}+\overrightarrow{IM}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{IM}=\overrightarrow{0}\Leftrightarrow\overrightarrow{IM}=\overrightarrow{0}\) \(\Rightarrow\) M trùng I
Vậy M là trọng tâm tam giác ABC