Bài 3: Tính chất đường phân giác của tam giác

NN

Cho tam giác ABC và ba đường phân giác AM, BN, CP cắt nhau tại O. Ba cạnh AB, BC, CA tỉ lệ với 4, 7, 5

a) Tính MC, biết BC=18cm

b) Tính AC, biết NC-NA=3cm

c) Tính tỉ số OP/OC

d) Chứng minh: MB/MC.NC/NA.PA/PB=1

NT
27 tháng 1 2021 lúc 21:48

a) Ta có: AB,BC,CA tỉ lệ với 4;7;5(gt)

nên AB:BC:CA=4:7:5

hay \(\dfrac{AB}{4}=\dfrac{BC}{7}=\dfrac{CA}{5}\)

Ta có: \(\dfrac{AB}{4}=\dfrac{AC}{5}\)(cmt)

nên \(\dfrac{AB}{AC}=\dfrac{4}{5}\)

Xét ΔABC có 

AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

mà \(\dfrac{AB}{AC}=\dfrac{4}{5}\)(cmt)

nên \(\dfrac{MB}{MC}=\dfrac{4}{5}\)

\(\Leftrightarrow\dfrac{MB}{4}=\dfrac{MC}{5}\)

mà MB+MC=BC(M nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{MB}{4}=\dfrac{MC}{5}=\dfrac{MB+MC}{4+5}=\dfrac{BC}{9}=\dfrac{18}{9}=2\)

Do đó: \(\dfrac{MC}{5}=2\)

hay MC=10(cm)

Vậy: MC=10cm

d) Xét ΔABC có 

CP là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{PA}{PB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)

Xét ΔABC có 

BN là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{NC}{NA}=\dfrac{BC}{AB}\)(Tính chất đường phân giác của tam giác)

Ta có: \(\dfrac{MB}{MC}\cdot\dfrac{NC}{NA}\cdot\dfrac{PA}{PB}\)

\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{AB}\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB\cdot AC\cdot BC}{AB\cdot AC\cdot BC}=1\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
PH
Xem chi tiết
AA
Xem chi tiết
HT
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
CN
Xem chi tiết
TV
Xem chi tiết