Bài 2: Định lý đảo và hệ quả của định lý Talet

MN

Cho tam giác ABC, trung tuyến AM và BN cắt nhau tại G. P là trung điểm AB, MP cắt BN tại Q. \(S_{GMQ}\)= 10 cm. Tính \(S_{ABC}\)

AH
1 tháng 3 2019 lúc 1:31

Lời giải:

Ta biết trong 1 tam giác, 3 đường trung tuyến đồng quy tại một điểm. Do đó trung tuyến $CP$ cắt $MP,BN$ tại $Q$ tại $G$ hay $P,G,C$ thẳng hàng.

Có: \(\frac{BP}{PA}=\frac{MB}{MC}(=1)\) nên theo định lý Ta-let đảo thì \(PM\parallel AC\)

hay \(\Rightarrow QM\parallel NC; PQ\parallel AN\)

Áp dụng hệ quả của định lý Ta-let:

\(\triangle BNC; QM\parallel NC\Rightarrow \frac{QM}{NC}=\frac{BQ}{BN}\)

\(\triangle ABN; PQ\parallel AN\Rightarrow \frac{PQ}{AN}=\frac{BQ}{BN}\)

\(\Rightarrow \frac{QM}{NC}=\frac{PQ}{AN}\). Mà \(AN=NC\Rightarrow QM=QP\)

\(\Rightarrow QM=\frac{1}{2}PM\)

Do đó: \(\frac{S_{GMQ}}{S_{GPM}}=\frac{QM}{PM}=\frac{1}{2}(1)\)

\(\frac{S_{GPM}}{S_{MPC}}=\frac{PG}{PC}=\frac{1}{3}(2)\) (theo tính chất trung tuyến và trọng tâm)

\(\frac{S_{MPC}}{S_{CPB}}=\frac{MC}{BC}=\frac{1}{2}(3)\)

\(\frac{S_{CPB}}{S_{CAB}}=\frac{PB}{AB}=\frac{1}{2}(4)\)

Từ \((1);(2);(3);(4)\Rightarrow \frac{S_{GPM}}{S_{CAB}}=\frac{1}{2}.\frac{1}{3}.\frac{1}{2}.\frac{1}{2}=\frac{1}{24}\)

\(\Rightarrow S_{ABC}=24S_{GMQ}=24.10=240(cm^2)\)

Bình luận (0)
AH
1 tháng 3 2019 lúc 1:36

Hình vẽ:

Định lý đảo và hệ quả của định lý Talet

Bình luận (1)

Các câu hỏi tương tự
ND
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
CM
Xem chi tiết
PT
Xem chi tiết
NM
Xem chi tiết
TK
Xem chi tiết
NK
Xem chi tiết
TM
Xem chi tiết