Bài 7: Trường hợp đồng dạng thứ ba

LV

Cho tam giác ABC, trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽđường thẳng song song với AM, cắt AB, AC tại E và F

a)Chứng minh DE + DF không đổi khi D di động trên BC

b) Qua A vẽ đường thẳng song song với BC, cắt FE tại K. Chứng minh rằng K là trung điểm của FE

AH
15 tháng 4 2021 lúc 23:37

Lời giải:

a) Áp dụng định lý Talet cho:

Tam giác $CFD$ có $AM\parallel FD$:

$\frac{DF}{AM}=\frac{CD}{CM}(1)$

Tam giác $ABM$ có $ED\parallel AM$:

$\frac{ED}{AM}=\frac{BD}{BM}(2)$

Lấy $(1)+(2)\Rightarrow \frac{DE+DF}{AM}=\frac{CD}{BC:2}+\frac{BD}{BC:2}=\frac{BC}{BC:2}=2$

$\Rightarrow DE+DF=2AM$ 

Vì $AM$ không đổi khi $D$ di động nên $DE+DF$ không đổi khi $D$ di động

b) Dễ thấy $KADM$ là hình bình hành do có các cặp cạnh đối song song. Do đó $KA=DM$

Áp dụng định lý Talet cho trường hợp $AK\parallel BD$:

$\frac{KE}{ED}=\frac{KA}{BD}=\frac{DM}{BD}(3)$

Lấy $(1):(2)$ suy ra $\frac{DF}{ED}=\frac{CD}{BD}$

$\Rightarrow \frac{EF}{ED}=\frac{CD}{BD}-1=\frac{CD-BD}{BD}=\frac{CM+DM-(BM-DM)}{BD}=\frac{2DM}{BD}(4)$

Từ $(3);(4)\Rightarrow \frac{2KE}{ED}=\frac{EF}{ED}$

$\Rightarrow 2KE=EF\Rightarrow FK=EK$ hay $K$ là trung điểm $EF$

 

 

Bình luận (0)
AH
15 tháng 4 2021 lúc 23:43

Hình vẽ:
undefined

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
LY
Xem chi tiết
TN
Xem chi tiết
LD
Xem chi tiết
NY
Xem chi tiết
TV
Xem chi tiết
SK
Xem chi tiết
TB
Xem chi tiết
TT
Xem chi tiết