Bài 3. CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC VÀ GIẢI TAM GIÁC

LM

Cho tam giác ABC thỏa mãn \(\dfrac{a}{\sqrt{3}}=\dfrac{b}{\sqrt{2}}=\dfrac{2c}{\sqrt{6}-\sqrt{2}}\)

Tính các góc của tam giác

AI LÀM ĐƯỢC MÌNH SẼ TICK CHO BẠN ẤY [LỜI GIẢI ĐẦY ĐỦ NHÉ :)))]

NL
13 tháng 2 2020 lúc 12:51

\(\Rightarrow\left\{{}\begin{matrix}b=\frac{\sqrt{2}}{\sqrt{3}}a\\c=\frac{\sqrt{6}-\sqrt{2}}{2\sqrt{3}}a\end{matrix}\right.\)

Áp dụng định lý hàm cos:

\(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{\frac{2}{3}a^2+\frac{2-\sqrt{3}}{3}a^2-a^2}{\frac{2\sqrt{2}}{\sqrt{3}}\left(\frac{\sqrt{6}-\sqrt{2}}{2\sqrt{3}}\right)a^2}=-\frac{1}{2}\)

\(\Rightarrow A=120^0\)

Tương tự: \(cosC=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+\frac{2}{3}a^2-\frac{2-\sqrt{3}}{3}a^2}{\frac{2.\sqrt{2}}{\sqrt{3}}a^2}\)

Do mình ko có nhu cầu lấy 1 tick của bạn nên bạn tự rút gọn nốt nhé :D

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TV
Xem chi tiết
NS
Xem chi tiết
DD
Xem chi tiết
LY
Xem chi tiết
TV
Xem chi tiết
BK
Xem chi tiết
LM
Xem chi tiết
TV
Xem chi tiết
LY
Xem chi tiết