Xét ΔEBD và ΔEAB có
góc EBD=góc EAB
góc E chung
=>ΔEBD đồng dạng vơi ΔEAB
=>EB/EA=ED/EB
=>EB^2=EA*ED
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Xét ΔEBD và ΔEAB có
góc EBD=góc EAB
góc E chung
=>ΔEBD đồng dạng vơi ΔEAB
=>EB/EA=ED/EB
=>EB^2=EA*ED
cho tam giác ABC phân giác AD qua B kẻ tia phân giác Bx sao cho góc CBX= góc BAD .tia Bx cắt AD ở E .a, cm tam giác ABE đồng dạng tam giác ADC . b, Be^2=AD.AE
cứuuuuuuuuuuuuuuuuuuuuuuuuuu
cho tam ABC, phân giác AD. Qua B kẻ tia Bx sao cho CBx=BAD. Tia Bx cắt tia AD ở E. Chứng minh:
a, tam giác ABE~tam giác ADC.
b, BE^2 = DE,AE
cho tam ABC, phân giác AD. Qua B kẻ tia Bx sao cho CBx=BAD. Tia Bx cắt tia AD ở E. Chứng minh: a, tam giác ABE~tam giác ADC. b, BE^2 = DE,AE
Cho tam giác ABC , phân giác AD . Qua B kẻ tia Bx sao cho góc CBx = góc BAD . Tia Bx cắt tia AD ở E. Chứng minh ;
a) Tam giác ABE đồng dạng tam giác ADC
b) BE2 = AD . AE
MÌNH ĐANG CẦN GẤP NHÉ
Cho tam giác ABC phân giác AD . Qua B kẻ Bx sao cho góc CBx = góc BAD . Tia Bx cắt DA ở E ( Bx và BA nằm trên 2 nửa mặt phẳng bờ BC ) CMR
a) Tam giác ABE đồng dạng tam giác ADC
b) BE2 = AD.AE
Cho tam giác ABC , phân giác AD . Qua B kẻ Bx sao cho góc CBx = góc BAD . Tia Bx cắt DA ở E ( Bx và BA nằm trên 2 nửa mặt phẳng bờ BC) . CMR
a) Tam giác ABE đồng dạng tam giác ADC
b) \(BE^2\) = AD . AE
Cho △ABC, phân giác AD. Qua B kẻ Bx sao cho góc CBx = góc BAD. Tia Bx cắt DA ở E (Bx và BA nằm trên hai nửa mặt phẳng bờ là BC). Chứng minh
a. △ABE đòng dạng với △ADC
b. \(^{BE^2}\) = DE.AE
Cho tam giác ABC, kẻ tia phân giác AD. Qua B kẻ Bx sao cho \(\widehat{xBC}=\widehat{CAD}\). Tia Bx cắt AD ở E. Chứng minh:
a) \(\Delta ABE=\Delta ADC\)
b) BE2 = ED x AE
cho tam giác ABC cuông tại A,vẽ phân giác AD, biết AB=6cm,AC=8cm ,qua B vẽ Bx sao cho góc CBx=góc DAB ,Bx cắt tia Ad tại M.chứng minh BM^2=AD*AM
Khi giải mọi người có thể giải thích được không ạ