Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NA

Cho tam giác ABC nhọn với 3 đường cao AD,BE,CF cắt nhau tại H. Gọi M là trung điểm của BC và K đối xứng với H qua M.

a.     BHCK là hình gì?

b.    Gọi O và I lần lượt là trung điểm của AK và AH, chứng minh IM là trung trực của FE , từ đó suy ra AK vuông góc với FE?

c.     Qua O kẻ đường thẳng song song với BC cắt AC tại T. Chứng minh rằng góc BIT vuông?

NT
13 tháng 1 2024 lúc 13:53

a: Xét tứ giác BHCK có

M là trung điểm chung của BC và HK

=>BHCK là hình bình hành

b: Xét tứ giác AFHE có

\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

=>AFHE là tứ giác nội tiếp đường tròn đường kính AH

=>AFHE nội tiếp (I)

=>IF=IE

=>I nằm trên đường trung trực của FE(1)

Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp đường tròn đường kính BC

=>BFEC nội tiếp (M)

=>MF=ME

=>M nằm trên đường trung trực của FE(2)

Từ (1) và (2) suy ra IM là đường trung trực của FE

=>IM\(\perp\)FE

Xét ΔHAK có

I,M lần lượt là trung điểm của HA,HK

=>IM là đường trung bình của ΔHAK

=>IM//AK

Ta có: IM//AK

IM\(\perp\)FE

Do đó: FE\(\perp\)AK

Bình luận (1)

Các câu hỏi tương tự
HP
Xem chi tiết
KC
Xem chi tiết
HH
Xem chi tiết
NQ
Xem chi tiết
BS
Xem chi tiết
LM
Xem chi tiết
PR
Xem chi tiết
BH
Xem chi tiết
BT
Xem chi tiết