a: Xét ΔAHB vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
c: Xét ΔABC có
BK,AH là phân giác
BK cắt AH tại O
=>O là tâm đường tròn nội tiếp
=>CO là phân giác của góc ACB
a: Xét ΔAHB vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
c: Xét ΔABC có
BK,AH là phân giác
BK cắt AH tại O
=>O là tâm đường tròn nội tiếp
=>CO là phân giác của góc ACB
: Cho tam giác ABC nhọn và cân tại A, đường cao AH (H∈BC).
a/ Hai tam giác ABH và ACH có bằng nhau không? Vì sao?
b/ Tia AH có phải là tia phân giác của góc BAC không? Vì sao?
c/ Kẻ tia phân giác BK (K ∈ AC) của góc ABC. Gọi O là giao điểm của AH và BK. Chứng minh rằng CO là tia phân giác của góc ACB.
Cho tam giác ABC cân tại A. Vẽ AH là tia phân giác của góc BAC ( H thuộc BC). a) Chứng minh tam giác ABH = tam giác ACH . Khi góc BAC bằng 300, tính số đo góc ABC. b) Gọi D là trung điểm của AC. Trên tia đối của tia DH lấy điểm E sao cho D là trung điểm của HE. Gọi F là trung điểm của AH, Q là giao điểm của CF và HD. Chứng minh AH song song với CE và HQ=1/3 HE.
Cho tam giác ABC vuông tại A, BK là tia phân giác của góc ABC (K thuộc AC). Lấy điểm I thuộc BC sao cho BI = BA.
a) Kẻ AH vuông góc với BC. Chứng minh: AI là tia phân giác của góc HAC
b) Gọi E là giao điểm của AH và BK. Chứng minh tam giác AKE là tam giác cân
cho tam giác ABC cân tại A, AB<BC và AH là tia phân giác của góc BAC (H thuộc BC)
a) CM tam giác ABH = tam giác ACH. Khi góc BAC = 30 độ, tính số đo góc BAC
b)Gọi D là trung điểm của AC trên tia đối của tia DN, lấy điểm F sao cho D là trug điểm của HE. Gọi E là trung điểm của AH, Q là giao điểm của CF và HD
CM AH//CE và HG=1/3HE
giúp mik nha mik đang cần gấp
. Cho tam giác ABC cân tại A, AH là đường phân giác (H thuộc BC). a) Chứng minh: tam giác ABH = tam giác ACH. b) Gọi I là trung điểm của cạnh AC, trên tia đối của tia IH lấy điểm F sao cho IF=IH. Chứng minh: AH = FC. c) Qua H kẻ đường thẳng song song với AC, đường thẳng này cắt tia FC tại K. Chứng minh: HC là tia phân giác của góc FHK d) Gọi M là giao điểm của HC và KI, tia FM cắt HK tại E. Biết AH=4cm, chứng minh: chu vi tam giác HIE lớn hơn 8cm
Cho tam giác ABC vuông tại A, đường phân giác BK (K thuộc AC). Kẻ KI vuông góc BC ( I thuộc BC)
a) C/m tam giác ABK = tam giác IBK
b) Kẻ đường cao AH của tam giác ABC. Chứng minh AI là tia phân giác của góc HAC
c) Gọi F là giao điểm của AH và BK. C/m tam giác AFK cân và AF < KC
d) Lấy điểm M thuộc tia AH sao cho AM = AC. C/m IM vuông góc IF
*Nhanh nhé mk đang cần gấp
giúp minh câu b thôi cũng được
Cho tam giác ABC cân tại A. Vẽ AH là tia phân giác của góc BAC ( H thuộc BC).
a) Chứng minh tam giác ABH = tam giác ACH . Khi góc BAC bằng 300, tính số đo góc ABC.
b) Gọi D là trung điểm của AC. Trên tia đối của tia DH lấy điểm E sao cho D là trung điểm của HE. Gọi F là trung điểm của AH, Q là giao điểm của CF và HD. Chứng minh AH song song với CE và HQ=1/3 HE.
Cho tam giác ABC cân tại A kẻ AH vuông góc với BC ( H thuộc BC )
a) chứng minh tam giác ABH = tam giác ACH
b) Gọi N là trung điểm của AC hai đoạn thẳng BN và AH cắt nhau tại G trên tia đối của tia NB lấy K sao cho NK = NG
chứng minh G là trọng tâm của tam giác ABC và AG // CK
c) chứng minh G là trung điểm BK
cho tam giác ABC vuông tại A, góc ACB= 30 độ. Tia phân giác của góc ABC cắt cạnh AC tại M. Lấy điểm K trên cạnh BC sao cho BA=BK.
a, chứng minh tam giác ABM= tam giác KBM
b, Gọi E là giao điểm của các đường thẳng AB và KM. Chứng minh tam giác MEC cân
c, chứng minh tam giác BEC đều
d, Kẻ AH vuông góc EM( H thuộc EM). Các đường thẳng AH và EC cắt nhau tại N. Chứng minh KN vuông góc ới AC
Cho tam giác ABC nhọn và cân tại A, đường cao AH (H\(\in\)BC). Kẻ tia phân giác BK (K\(\in\)AC) của góc ABC. Gọi O là giao điểm của AH và BK. Chứng minh rằng CO là tia phân giác của góc ACB.