OG

Cho tam giác ABC cân tại A. Vẽ AH là tia phân giác của góc BAC ( H thuộc BC). a) Chứng minh tam giác ABH = tam giác ACH . Khi góc BAC bằng 300, tính số đo góc ABC. b) Gọi D là trung điểm của AC. Trên tia đối của tia DH lấy điểm E sao cho D là trung điểm của HE. Gọi F là trung điểm của AH, Q là giao điểm của CF và HD. Chứng minh AH song song với CE và HQ=1/3 HE.

NT
6 tháng 4 2022 lúc 22:10

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC
AH chung

Do đó: ΔABH=ΔACH

b: \(\widehat{ABC}=\dfrac{180^0-30^0}{2}=75^0\)

c: Xét tứ giác AHCE có

D là trung điểm của AC

D là trung điểm của HE

Do đó: AHCE là hình bình hành

Suy ra: AH//CE

Bình luận (0)