a: Xét (O) có
góc ACN là góc nội tiếp chắn cung AN
góc ABM là góc nội tiếp chắn cung AM
góc ABM=góc ACN
Do đó: AM=AN
b: Kẻ tiếp tuyến phụ Ax
=>góc xAC=góc ABC
mà góc ABC=góc AEF
nên góc AEF=góc xAC
=>Ax//FE
=>OA vuông góc với FE
a: Xét (O) có
góc ACN là góc nội tiếp chắn cung AN
góc ABM là góc nội tiếp chắn cung AM
góc ABM=góc ACN
Do đó: AM=AN
b: Kẻ tiếp tuyến phụ Ax
=>góc xAC=góc ABC
mà góc ABC=góc AEF
nên góc AEF=góc xAC
=>Ax//FE
=>OA vuông góc với FE
Bài 9: Cho đường tròn (O) ngoại tiếp tam giác ABC nhọn, kẻ đường cao BE, CF của tam giác ABC. BE cắt CF tại H. BE cắt (O) tại M, CF cắt (O) tại N. Chứng minh: a) B, C, E, F cùng thuộc 1 đường tròn. b) A, E, H, F cùng thuộc 1 đường tròn. c) AM = AN. d) MN // EF. e) OA vuông góc EF.
Phần tự luận
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
a) Tứ giác CEHD nội tiếp
Cho tam giác abc (ab ac) có 3 góc nhọn nội tiếp đường tròn (O;R). Vẽ đường cao be và CF cắt nhau tại H. Các đường thẳng BE,CF lần lượt cắt (o) tại P và Q . Tiếp tuyến tại B và C cắt EF lần lượt tại N,M. đường thẳng MP cắt (o) tại K. Chứng minh ME^2=MK.MP
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O, các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt (O) tại M và N.
a, Chứng minh các tứ giác BHDF và BFEC nội tiếp
b, Chứng minh AM=AN
c, Chứng minh AM là tiếp tuyến của đường tròn ngoại tiếp tam giác MHD
Cho tam giác nhọn ABC nội tiếp đường tròn (O;R).Đường cao BE và CF của tam giác ABC lần lượt cắt đường tròn tại M và N. CM rằng:
a)Tứ giác BCEF nội tiếp đường tròn
B)Mn//EF
C)OA vuông góc EF
Cho tam giác ABC nhọn (AB < AC) nộp tiếp (O;R), có các đường cao BE, CF cắt nhau tại H. Gọi I,K lần lượt là trung điểm của BC, AH
a/ Chứng minh các tứ giác AEHF, BCEF nội tiếp đường tròn. Suy ra IK vuông góc EF
b/ AH cắt BC tại D. Chứng minh tam giác DEF nội tiếp đường tròn đường kính IK
c/ Các đường thẳng EF, BC cắt nhau tại M. AM cắt (O) tại N. Chứng minh HN vuông góc AM
d/ Kẻ tiếp tuyến tại B của (O) cắt ME tại S. Chứng minh 5 điểm B S N E I cùng thuộc 1 đường tròn
Cho tam giác ABC nhọn và nội tiếp đường tròn O. Hai đường cao BE, CF của tam giác ABC cắt đường tròn O lần lượt tại K và I. a) Chứng minh EF // IK. b) IK cắt AB và AC lần lượt tại P và Q. Chứng minh OA⊥PQ . c) Tia AO cắt (O) tại D, BE và CF cắt nhau tại H. Chứng minh tứ giác BHCD là hình bình hành. d) Tia AH cắt (O) tại M. Chứng minh AB.DC = MB.AC. e) Chứng minh BD.AC + CD.AB = AD.BC.
Cho tam giác ABC nhọn và nội tiếp đường tròn O. Hai đường cao BE, CF của tam giác ABC cắt đường tròn O lần lượt tại K và I. a) Chứng minh EF // IK. b) IK cắt AB và AC lần lượt tại P và Q. Chứng minh OA⊥PQ . c) Tia AO cắt (O) tại D, BE và CF cắt nhau tại H. Chứng minh tứ giác BHCD là hình bình hành. d) Tia AH cắt (O) tại M. Chứng minh AB.DC = MB.AC. e) Chứng minh BD.AC + CD.AB = AD.BC.
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R) .các đường cao AD,BE,CF cắt nhau tại H.Tại A vẽ tiếp tuyến xx' của đường tròn (O)
a) chứng minh tứ giác BFEC nội tiếp
b) chứng minh OA vuông góc EF
c) chứng minh hệ thức AB.AF= AC.AE